A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

Overview

GAM

PWC codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018).

Abstract

Graph classification is a problem with practical applications in many different domains. To solve this problem, one usually calculates certain graph statistics (i.e., graph features) that help discriminate between graphs of different classes. When calculating such features, most existing approaches process the entire graph. In a graphlet-based approach, for instance, the entire graph is processed to get the total count of different graphlets or subgraphs. In many real-world applications, however, graphs can be noisy with discriminative patterns confined to certain regions in the graph only. In this work, we study the problem of attention-based graph classification . The use of attention allows us to focus on small but informative parts of the graph, avoiding noise in the rest of the graph. We present a novel RNN model, called the Graph Attention Model (GAM), that processes only a portion of the graph by adaptively selecting a sequence of “informative” nodes. Experimental results on multiple real-world datasets show that the proposed method is competitive against various well-known methods in graph classification even though our method is limited to only a portion of the graph.

This repository provides an implementation for GAM as described in the paper:

Graph Classification using Structural Attention. John Boaz Lee, Ryan Rossi, and Xiangnan Kong KDD, 2018. [Paper]

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx           2.4
tqdm               4.28.1
numpy              1.15.4
pandas             0.23.4
texttable          1.5.0
argparse           1.1.0
sklearn            0.20.0
torch              1.2.0.
torchvision        0.3.0

Datasets

The code takes graphs for training from an input folder where each graph is stored as a JSON. Graphs used for testing are also stored as JSON files. Every node id, node label and class has to be indexed from 0. Keys of dictionaries and nested dictionaries are stored strings in order to make JSON serialization possible.

For example these JSON files have the following key-value structure:

{"target": 1,
 "edges": [[0, 1], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]],
 "labels": {"0": 2, "1": 3, "2": 2, "3": 3, "4": 4},
 "inverse_labels": {"2": [0, 2], "3": [1, 3], "4": [4]}}

The **target key** has an integer value, which is the ID of the target class (e.g. Carcinogenicity). The **edges key** has an edge list value for the graph of interest. The **labels key** has a dictonary value for each node, these labels are stored as key-value pairs (e.g. node - atom pair). The **inverse_labels key** has a key for each node label and the values are lists containing the nodes that have a specific node label.

Options

Training a GAM model is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --train-graph-folder   STR    Training graphs folder.      Default is `input/train/`.
  --test-graph-folder    STR    Testing graphs folder.       Default is `input/test/`.
  --prediction-path      STR    Path to store labels.        Default is `output/erdos_predictions.csv`.
  --log-path             STR    Log json path.               Default is `logs/erdos_gam_logs.json`. 

Model options

  --repetitions          INT         Number of scoring runs.                  Default is 10. 
  --batch-size           INT         Number of graphs processed per batch.    Default is 32. 
  --time                 INT         Time budget.                             Default is 20. 
  --step-dimensions      INT         Neurons in step layer.                   Default is 32. 
  --combined-dimensions  INT         Neurons in shared layer.                 Default is 64. 
  --epochs               INT         Number of GAM training epochs.           Default is 10. 
  --learning-rate        FLOAT       Learning rate.                           Default is 0.001.
  --gamma                FLOAT       Discount rate.                           Default is 0.99. 
  --weight-decay         FLOAT       Weight decay.                            Default is 10^-5. 

Examples

The following commands learn a neural network, make predictions, create logs, and write the latter ones to disk.

Training a GAM model on the default dataset. Saving predictions and logs at default paths.

python src/main.py

Training a GAM model for a 100 epochs with a batch size of 512.

python src/main.py --epochs 100 --batch-size 512

Setting a high time budget for the agent.

python src/main.py --time 128

Training a model with some custom learning rate and epoch number.

python src/main.py --learning-rate 0.001 --epochs 200

License


Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022