EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

Overview

EGNN - Pytorch

Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This technique went for simple invariant features, and ended up beating all previous methods (including SE3 Transformer and Lie Conv) in both accuracy and performance. SOTA in dynamical system models, molecular activity prediction tasks, etc.

Install

$ pip install egnn-pytorch

Usage

import torch
from egnn_pytorch import EGNN

layer1 = EGNN(dim = 512)
layer2 = EGNN(dim = 512)

feats = torch.randn(1, 16, 512)
coors = torch.randn(1, 16, 3)

feats, coors = layer1(feats, coors)
feats, coors = layer2(feats, coors) # (1, 16, 512), (1, 16, 3)

With edges

import torch
from egnn_pytorch import EGNN

layer1 = EGNN(dim = 512, edge_dim = 4)
layer2 = EGNN(dim = 512, edge_dim = 4)

feats = torch.randn(1, 16, 512)
coors = torch.randn(1, 16, 3)
edges = torch.randn(1, 16, 16, 4)

feats, coors = layer1(feats, coors, edges)
feats, coors = layer2(feats, coors, edges) # (1, 16, 512), (1, 16, 3)

Citations

@misc{satorras2021en,
    title 	= {E(n) Equivariant Graph Neural Networks}, 
    author 	= {Victor Garcia Satorras and Emiel Hoogeboom and Max Welling},
    year 	= {2021},
    eprint 	= {2102.09844},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • training batch size

    training batch size

    Dear authors,

    thanks for your great work! I saw your example, which is easy to understand. But I notice that during training, in each iteration, it seems it supports the case where batch-size > 1, but all the graphs have the same adj_mat. do you have better solution for that? thanks

    opened by futianfan 6
  • Import Error when torch_geometric is not available

    Import Error when torch_geometric is not available

    https://github.com/lucidrains/egnn-pytorch/blob/e35510e1be94ee9f540bf2ffea49cd63578fe473/egnn_pytorch/egnn_pytorch.py#L413

    A small problem, this Tensor is not defined.

    Thanks for your work.

    opened by zrt 4
  • About aggregations in EGNN_sparse

    About aggregations in EGNN_sparse

    Hi, thanks for your great work!

    I have a question on how aggregations are computed for node embedding and coordinate embedding. In the paper, the aggregation for node embedding is computed over its neighbors, while the aggregation for coordinate embedding is computed over is computed over all others. However, in EGNN_sparse, I didn't notice such difference in aggregations.

    I guess it is because computing all-pair messages for coordinate embedding makes 'sparse' meaningless, but I would like to double-check to see if I get this correctly. So anyway, did you do this intentionally? Or did I miss something?

    My appreciation.

    opened by simon1727 4
  • Few queries on the implementation

    Few queries on the implementation

    Hi - fast work coding these things up, as usual! Looking at the paper and your code, you're not using squared distance for the edge weighting. Is that intentional? Also, it looks like you are adding the old feature vectors to the new ones rather than taking the new vectors directly from the fully connected net - is that also an intentional change from the paper?

    opened by denjots 3
  • Fix PyG problems. add exmaple for point cloud denoising

    Fix PyG problems. add exmaple for point cloud denoising

    • Fixed some tiny errors in data flows for the PyG layers (dimensions and slices mainly)
    • fixed the EGNN_Sparse_Network so now it works
    • provides example for point cloud denoising (from gaussian masked coordinates), and showcases potential issues:
      • unstable (could be due to nature of data, not sure, but gvp does well on it)
      • not able to beat baseline (in contrast, gvp gets to 0.8 RMSD while this gets to the baseline 1 RMSD but not below it)
    opened by hypnopump 2
  • EGNN_sparse incorrect positional encoding output

    EGNN_sparse incorrect positional encoding output

    Hi, many thanks for the implementation!

    I was quickly checking the code for the pytorch geometric implementation of the EGNN_sparse layer, and I noticed that it expects the first 3 columns in the features to be the coordinates. However, in the update method, features and coordinates are passed in the wrong order.

    https://github.com/lucidrains/egnn-pytorch/blob/375d686c749a685886874baba8c9e0752db5f5be/egnn_pytorch/egnn_pytorch.py#L192

    This may cause problems during learning (think of concatenating several of these layers), as they expect coordinate and feature order to be consistent.

    One can reproduce this behaviour in the following snippet:

    layer = EGNN_sparse(feats_dim=1, pos_dim=3, m_dim=16, fourier_features=0)
    
    R = rot(*torch.rand(3))
    T = torch.randn(1, 1, 3)
    
    feats = torch.randn(16, 1)
    coors = torch.randn(16, 3)
    x1 = torch.cat([coors, feats], dim=-1)
    x2 = torch.cat([(coors @ R + T).squeeze() , feats], dim=-1)
    edge_idxs = (torch.rand(2, 20) * 16).long()
    
    out1 = layer(x=x1, edge_index=edge_idxs)
    out2 = layer(x=x2, edge_index=edge_idxs)
    

    After fixing the order of these arguments in the update method then the layer behaves as expected (output features are equivariant, and coordinate features are equivariant upon se(3) transformation)

    opened by josejimenezluna 2
  • Nan Values after stacking multiple layers

    Nan Values after stacking multiple layers

    Hi Lucid!!

    I find that when stacking multiple layers the output from the model rapidly goes to Nan. I suspect it may be related to the weights used for initialization.

    Here is a minimal working example:

    Make some data:

        import numpy as np
        import torch
        from egnn_pytorch import EGNN
        
        torch.set_default_dtype(torch.double)
    
        zline = np.arange(0, 2, 0.05)
        xline = np.sin(zline * 2 * np.pi) 
        yline = np.cos(zline * 2 * np.pi)
        points = np.array([xline, yline, zline])
        geom = torch.tensor(points.transpose())[None,:]
        feat = torch.randint(0, 20, (1, geom.shape[1],1))
    

    Make a model:

        class ResEGNN(torch.nn.Module):
            def __init__(self, depth = 2, dims_in = 1):
                super().__init__()
                self.layers = torch.nn.ModuleList([EGNN(dim = dims_in) for i in range(depth)])
            
            def forward(self, geom, feat):
                for layer in self.layers:
                    feat, geom = layer(feat, geom)
                return geom
    

    Run model for varying depths:

        for i in range(10):
            model = ResEGNN(depth = i)
            pred = model(geom, feat)
            mean_absolute_value  = torch.abs(pred).mean()
            print("Order of predictions {:.2f}".format(np.log(mean_absolute_value.detach().numpy())))
    

    Output : Order of predictions -0.29 Order of predictions 0.05 Order of predictions 6.65 Order of predictions 21.38 Order of predictions 78.25 Order of predictions 302.71 Order of predictions 277.38 Order of predictions nan Order of predictions nan Order of predictions nan

    opened by brennanaba 2
  • Edge features thrown out

    Edge features thrown out

    Hi, thanks for this implementation!

    I was wondering if the pytorch-geometric implementation of this architecture is throwing the edge features out by mistake, as seen here

    https://github.com/lucidrains/egnn-pytorch/blob/1b8320ade1a89748e4042ae448626652f1c659a1/egnn_pytorch/egnn_pytorch.py#L148-L151

    Or maybe my understanding is wrong? Cheers,

    opened by josejimenezluna 2
  • solve ij -> i bottleneck in sparse version

    solve ij -> i bottleneck in sparse version

    I don't recommend normalizing the weights nor the coords.

    • The weights are the coefficient that multiplies the delta in the i->j direction
    • the coords are the deltas in the i->j direction Can't see the advantage of normalizing them beyond a naive stabilization that might affect the convergence properties by needing more layers due to the limited transformation that a layer will be able to do.

    It works fine for denoising without normalization (the unstability might come from huge outliers, but then tuning the learning rate or clipping the gradients might be of help.)

    opened by hypnopump 0
  • Questions about the EGNN code

    Questions about the EGNN code

    Recently, I've tried to read EGNN paper and study your EGNN code. Actually, I had hard time to understand both paper and code because my major is not computer science. When studying your code, I realize that the shape of hidden_out and the shape of kwargs["x"] must be same to perform add operation (becaus of residual connection) in the class EGNN_sparse forward method. How can I increase or decrease the hidden dimension size of x?

    I would like to get some advice.

    Thanks for your consideration in this regard.

    opened by Byun-jinyoung 0
  • Wrong edge_index size hint in  class EGNN_Sparse of pyg version

    Wrong edge_index size hint in class EGNN_Sparse of pyg version

    Hi, I found there may be a little mistake. In the input hint of class EGNN_Sparse of pyg version, the size of edge_index is (n_edges, 2). However, it should be (2, n_edges). Otherwise, the distance calculation will be not correct. """ Inputs: * x: (n_points, d) where d is pos_dims + feat_dims * edge_index: (n_edges, 2) * edge_attr: tensor (n_edges, n_feats) excluding basic distance feats. * batch: (n_points,) long tensor. specifies xloud belonging for each point * angle_data: list of tensors (levels, n_edges_i, n_length_path) long tensor. * size: None """

    opened by Layne-Huang 2
  • Exploding Gradients With 4 Layers

    Exploding Gradients With 4 Layers

    I'm using EGNN with 4 layers (where I also do global attention after each layer), and I'm seeing exploding gradients after 90 epochs or so. I'm using techniques discussed earlier (sparse attention matrix, coor_weights_clamp_value, norm_coors), but I'm not sure if there's anything else I should be doing. I'm also not updating the coordinates, so the fix in the pull request doesn't apply.

    opened by cutecows 0
  • Added optional tanh to coors_mlp

    Added optional tanh to coors_mlp

    This removes the NaN bug completely (must also use norm_coors otherwise performance dies)

    The NaN bug comes from the coors_mlp exploding, so forcing values between -1 and 1 prevents this. If coordinates are normalised then performance should not be adversely affected.

    opened by jscant 1
Releases(0.2.6)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022