NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

Overview

NU-Wave — Official PyTorch Implementation

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
Junhyeok Lee, Seungu Han @ MINDsLab Inc., SNU

Paper(arXiv): https://arxiv.org/abs/2104.02321 (Accepted to INTERSPEECH 2021)
Audio Samples: https://mindslab-ai.github.io/nuwave

Official Pytorch+Lightning Implementation for NU-Wave.

Update: CODE RELEASED! README is DONE.

Requirements

Preprocessing

Before running our project, you need to download and preprocess dataset to .pt files

  1. Download VCTK dataset
  2. Remove speaker p280 and p315
  3. Modify path of downloaded dataset data:dir in hparameters.yaml
  4. run utils/wav2pt.py
$ python utils/wav2pt.py

Training

  1. Adjust hparameters.yaml, especially train section.
train:
  batch_size: 18 # Dependent on GPU memory size
  lr: 0.00003
  weight_decay: 0.00
  num_workers: 64 # Dependent on CPU cores
  gpus: 2 # number of GPUs
  opt_eps: 1e-9
  beta1: 0.5
  beta2: 0.999
  • If you want to train with single speaker, use VCTKSingleSpkDataset instead of VCTKMultiSpkDataset for dataset in dataloader.py. And use batch_size=1 for validation dataloader.
  • Adjust data section in hparameters.yaml.
data:
  dir: '/DATA1/VCTK/VCTK-Corpus/wav48/p225' #dir/spk/format
  format: '*mic1.pt'
  cv_ratio: (223./231., 8./231., 0.00) #train/val/test
  1. run trainer.py.
$ python trainer.py
  • If you want to resume training from checkpoint, check parser.
    parser = argparse.ArgumentParser()
    parser.add_argument('-r', '--resume_from', type =int,\
            required = False, help = "Resume Checkpoint epoch number")
    parser.add_argument('-s', '--restart', action = "store_true",\
            required = False, help = "Significant change occured, use this")
    parser.add_argument('-e', '--ema', action = "store_true",\
            required = False, help = "Start from ema checkpoint")
    args = parser.parse_args()
  • During training, tensorboard logger is logging loss, spectrogram and audio.
$ tensorboard --logdir=./tensorboard --bind_all

Evaluation

run for_test.py or test.py

$ python test.py -r {checkpoint_number} {-e:option, if ema} {--save:option}
or
$ python for_test.py -r {checkpoint_number} {-e:option, if ema} {--save:option}

Please check parser.

    parser = argparse.ArgumentParser()
    parser.add_argument('-r', '--resume_from', type =int,
                required = True, help = "Resume Checkpoint epoch number")
    parser.add_argument('-e', '--ema', action = "store_true",
                required = False, help = "Start from ema checkpoint")
    parser.add_argument('--save', action = "store_true",
               required = False, help = "Save file")

While we provide lightning style test code test.py, it has device dependency. Thus, we recommend to use for_test.py.

References

This implementation uses code from following repositories:

This README and the webpage for the audio samples are inspired by:

The audio samples on our webpage are partially derived from:

Repository Structure

.
├── Dockerfile
├── dataloader.py           # Dataloader for train/val(=test)
├── filters.py              # Filter implementation
├── test.py                 # Test with lightning_loop.
├── for_test.py             # Test with for_loop. Recommended due to device dependency of lightning
├── hparameter.yaml         # Config
├── lightning_model.py      # NU-Wave implementation. DDPM is based on ivanvok's WaveGrad implementation
├── model.py                # NU-Wave model based on lmnt-com's DiffWave implementation
├── requirement.txt         # requirement libraries
├── sampling.py             # Sampling a file
├── trainer.py              # Lightning trainer
├── README.md           
├── LICSENSE
├── utils
│  ├── stft.py              # STFT layer
│  ├── tblogger.py          # Tensorboard Logger for lightning
│  └── wav2pt.py            # Preprocessing
└── docs                    # For github.io
   └─ ...

Citation & Contact

If this repository useful for your research, please consider citing! Bibtex will be updated after INTERSPEECH 2021 conference.

@article{lee2021nuwave,
  title={NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling},
  author={Lee, Junhyeok and Han, Seungu},
  journal={arXiv preprint arXiv:2104.02321},
  year={2021}
}

If you have a question or any kind of inquiries, please contact Junhyeok Lee at [email protected]

Owner
MINDs Lab
MINDsLab provides AI platform and various AI engines based on deep machine learning.
MINDs Lab
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022