Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

Overview

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

Alt text

Introduction

This is a PyTorch implementation of "SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training"

The paper propose a novel text detection system termed SelfText Beyond Polygon(SBP) with Bounding Box Supervision(BBS) and Dynamic Self Training~(DST), where training a polygon-based text detector with only a limited set of upright bounding box annotations. As shown in the Figure, SBP achieves the same performance as strong supervision while saving huge data annotation costs.

From more details,please refer to our arXiv paper

Environments

  • python 3
  • torch = 1.1.0
  • torchvision
  • Pillow
  • numpy

ToDo List

  • Release code(BBS)
  • Release code(DST)
  • Document for Installation
  • Document for testing and training
  • Evaluation
  • Demo script
  • re-organize and clean the parameters

Dataset

Supported:

  • ICDAR15
  • ICDAR17MLI
  • sythtext800K
  • TotalText
  • MSRA-TD500
  • CTW1500

model zoo

Supported text detection:

Bounding Box Supervision(BBS)

Train

The training strategy includes three steps: (1) training SASN with synthetic data (2) generating pseudo label on real data based on bounding box annotation with SASN (3) training the detectors(EAST and PSENet) with the pseudo label

training SASN with synthtext or curved synthtext

(TDB)

generating pseudo label on real data with SASN

(TDB)

training EAST or PSENet with the pseudo label

(TDB)

Eval

for example (batchsize=2)

(TDB)

Visualization

Dynamic Self Training

Train

(TDB)

Eval

for example (batchsize=2)

(TDB)

Visualization

Experiments

Bounding Box Supervision

The performance of EAST on ICDAR15

Method Dataset Pretrain precision recall f-score
EAST_box ICDAR15 - 65.8 63.8 64.8
EAST ICDAR15 - 76.9 77.1 77.0
EAST_pseudo(SynthText) ICDAR15 - 77.8 78.2 78.0
EAST_box ICDAR15 SynthText 70.8 72.0 71.4
EAST ICDAR15 SynthText 82.0 82.4 82.2
EAST_pseudo(SynthText) ICDAR15 SynthText 81.3 82.2 81.8

The performance of EAST on MSRA-TD500

Method Dataset Pretrain precision recall f-score
EAST_box MSRA-TD500 - 40.49 31.05 35.15
EAST MSRA-TD500 - 71.76 69.05 70.38
EAST_pseudo(SynthText) MSRA-TD500 - 71.27 67.54 69.36
EAST_box MSRA-TD500 SynthText 48.34 42.37 45.16
EAST MSRA-TD500 SynthText 77.91 76.45 77.17
EAST_pseudo(SynthText) MSRA-TD500 SynthText 77.42 73.85 75.59

The performance of PSENet on ICDAR15

Method Dataset Pretrain precision recall f-score
PSENet_box ICDAR15 - 70.17 69.09 69.63
PSENet ICDAR15 - 81.6 79.5 80.5
PSENet_pseudo(SynthText) ICDAR15 - 82.9 77.6 80.2
PSENet_box ICDAR15 SynthText 72.65 74.29 73.46
PSENet ICDAR15 SynthText 86.42 83.54 84.96
PSENet_pseudo(SynthText) ICDAR15 SynthText 86.77 83.34 85.02

The performance of PSENet on MSRA-TD500

Method Dataset Pretrain precision recall f-score
PSENet_box MSRA-TD500 - 47.17 36.90 41.41
PSENet MSRA-TD500 - 80.86 77.72 79.13
PSENet_pseudo(SynthText) MSRA-TD500 - 80.32 77.26 78.86
PSENet_box MSRA-TD500 SynthText 47.45 39.49 43.11
PSENet MSRA-TD500 SynthText 84.11 84.97 84.54
PSENet_pseudo(SynthText) MSRA-TD500 SynthText 84.03 84.03 84.03

The performance of PSENet on Total Text

Method Dataset Pretrain precision recall f-score
PSENet_box Total Text - 46.5 43.6 45.0
PSENet Total Text - 80.4 76.5 78.4
PSENet_pseudo(SynthText) Total Text - 80.33 73.54 76.78
PSENet_pseudo(Curved SynthText) Total Text - 81.68 74.61 78.0
PSENet_box Total Text SynthText 51.94 47.45 49.59
PSENet Total Text SynthText 83.4 78.1 80.7
PSENet_pseudo(SynthText) Total Text SynthText 81.57 75.54 78.44
PSENet_pseudo(Curved SynthText) Total Text SynthText 82.51 77.57 80.0

The visualization of bounding-box annotation and the pseudo labels generated by BBS on Total-Text The visualization of bounding-box annotation and the pseudo labels generated by BBS on Total-Text

links

https://github.com/SakuraRiven/EAST

https://github.com/WenmuZhou/PSENet.pytorch

License

For academic use, this project is licensed under the Apache License - see the LICENSE file for details. For commercial use, please contact the authors.

Citations

Please consider citing our paper in your publications if the project helps your research.

Eamil: [email protected]

Owner
weijiawu
computer version, OCR I am looking for a research intern or visiting chance.
weijiawu
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022