Type4Py: Deep Similarity Learning-Based Type Inference for Python

Overview

Type4Py: Deep Similarity Learning-Based Type Inference for Python

GH Workflow

This repository contains the implementation of Type4Py and instructions for re-producing the results of the paper.

Dataset

For Type4Py, we use the ManyTypes4Py dataset. You can download the latest version of the dataset here. Also, note that the dataset is already de-duplicated.

Code De-deduplication

If you want to use your own dataset, it is essential to de-duplicate the dataset by using a tool like CD4Py.

Installation Guide

Requirements

  • Linux-based OS
  • Python 3.5 or newer
  • An NVIDIA GPU with CUDA support

Quick Install

git clone https://github.com/saltudelft/type4py.git && cd type4py
pip install .

Usage Guide

Follow the below steps to train and evaluate the Type4Py model.

1. Extraction

NOTE: Skip this step if you're using the ManyTypes4Py dataset.

$ type4py extract --c $DATA_PATH --o $OUTPUT_DIR --d $DUP_FILES --w $CORES

Description:

  • $DATA_PATH: The path to the Python corpus or dataset.
  • $OUTPUT_DIR: The path to store processed projects.
  • $DUP_FILES: The path to the duplicate files, i.e., the *.jsonl.gz file produced by CD4Py. [Optional]
  • $CORES: Number of CPU cores to use for processing projects.

2. Preprocessing

$ type4py preprocess --o $OUTPUT_DIR --l $LIMIT

Description:

  • $OUTPUT_DIR: The path that was used in the first step to store processed projects. For the MT4Py dataset, use the directory in which the dataset is extracted.
  • $LIMIT: The number of projects to be processed. [Optional]

3. Vectorizing

$ type4py vectorize --o $OUTPUT_DIR

Description:

  • $OUTPUT_DIR: The path that was used in the previous step to store processed projects.

4. Learning

$ type4py learn --o $OUTPUT_DIR --c --p $PARAM_FILE

Description:

  • $OUTPUT_DIR: The path that was used in the previous step to store processed projects.

  • --c: Trains the complete model. Use type4py learn -h to see other configurations.

  • --p $PARAM_FILE: The path to user-provided hyper-parameters for the model. See this file as an example. [Optional]

5. Testing

$ type4py predict --o $OUTPUT_DIR --c

Description:

  • $OUTPUT_DIR: The path that was used in the first step to store processed projects.
  • --c: Predicts using the complete model. Use type4py predict -h to see other configurations.

6. Evaluating

$ type4py eval --o $OUTPUT_DIR --t c --tp 10

Description:

  • $OUTPUT_DIR: The path that was used in the first step to store processed projects.
  • --t: Evaluates the model considering different prediction tasks. E.g., --t c considers all predictions tasks, i.e., parameters, return, and variables. [Default: c]
  • --tp 10: Considers Top-10 predictions for evaluation. For this argument, You can choose a positive integer between 1 and 10. [Default: 10]

Use type4py eval -h to see other options.

Converting Type4Py to ONNX

To convert the pre-trained Type4Py model to the ONNX format, use the following command:

$ type4py to_onnx --o $OUTPUT_DIR

Description:

  • $OUTPUT_DIR: The path that was used in the usage section to store processed projects and the model.

VSCode Extension

vsm-version

Type4Py can be used in VSCode, which provides ML-based type auto-completion for Python files. The Type4Py's VSCode extension can be installed from the VS Marketplace here.

Type4Py Server

GH Workflow

The Type4Py server is deployed on our server, which exposes a public API and powers the VSCode extension. However, if you would like to deploy the Type4Py server on your own machine, you can adapt the server code here. Also, please feel free to reach out to us for deployment, using the pre-trained Type4Py model and how to train your own model by creating an issue.

Citing Type4Py

@article{mir2021type4py,
  title={Type4Py: Deep Similarity Learning-Based Type Inference for Python},
  author={Mir, Amir M and Latoskinas, Evaldas and Proksch, Sebastian and Gousios, Georgios},
  journal={arXiv preprint arXiv:2101.04470},
  year={2021}
}
Owner
Software Analytics Lab
Software Analytics Lab @ TU Delft
Software Analytics Lab
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023