CodeContests is a competitive programming dataset for machine-learning

Overview

CodeContests

CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode.

It consists of programming problems, from a variety of sources:

Site URL Source
Aizu https://judge.u-aizu.ac.jp CodeNet
AtCoder https://atcoder.jp CodeNet
CodeChef https://www.codechef.com description2code
Codeforces https://codeforces.com description2code and Codeforces
HackerEarth https://www.hackerearth.com description2code

Problems include test cases in the form of paired inputs and outputs, as well as both correct and incorrect human solutions in a variety of languages.

Usage

Install the Cloud SDK, which provides the gsutil utility. You can then download the full data (~3GiB) with, e.g:

gsutil -m cp -r gs://dm-code_contests /tmp

The data consists of ContestProblem protocol buffers in Riegeli format. See contest_problem.proto for the protocol buffer definition and documentation of its fields.

The dataset contains three splits:

Split Filename
Training code_contests_train.riegeli-*-of-00128
Validation code_contests_valid.riegeli
Test code_contests_test.riegeli

There is example code for iterating over the dataset in C++ (in print_names.cc) and Python (in print_names_and_sources.py). For example, you can print the source and name of each problem in the validation data by installing bazel and then running:

bazel run -c opt \
  :print_names_and_sources /tmp/dm-code_contests/code_contests_valid.riegeli

Or do the same for the training data with the following command (which will print around 13000 lines of output):

bazel run -c opt \
  :print_names_and_sources /tmp/dm-code_contests/code_contests_train.riegeli*

Planned updates

We plan to update this repository with code for executing and evaluating potential solutions.

Citing this work

If you use this dataset or code, please cite this paper:

@misc{alphacode,
    title={Competition-Level Code Generation with AlphaCode},
    author={Li, Yujia and Choi, David and Chung, Junyoung and Kushman, Nate and
    Schrittwieser, Julian and Leblond, Rémi and Eccles, Tom and
    Keeling, James and Gimeno, Felix and Dal Lago, Agustin and
    Hubert, Thomas and Choy, Peter and de Masson d'Autume, Cyprien and
    Babuschkin, Igor and Chen, Xinyun and Huang, Po-Sen and Welbl, Johannes and
    Gowal, Sven and Cherepanov, Alexey and Molloy, James and
    Mankowitz, Daniel and Sutherland Robson, Esme and Kohli, Pushmeet and
    de Freitas, Nando and Kavukcuoglu, Koray and Vinyals, Oriol},
    year={2022},
    month={Feb}}

License

The code is licensed under the Apache 2.0 License.

All non-code materials provided are made available under the terms of the CC BY 4.0 license (Creative Commons Attribution 4.0 International license).

We gratefully acknowledge the contributions of the following:

Use of the third-party software, libraries code or data may be governed by separate terms and conditions or license provisions. Your use of the third-party software, libraries or code may be subject to any such terms. We make no representations here with respect to rights or abilities to use any such materials.

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022