CodeContests is a competitive programming dataset for machine-learning

Overview

CodeContests

CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode.

It consists of programming problems, from a variety of sources:

Site URL Source
Aizu https://judge.u-aizu.ac.jp CodeNet
AtCoder https://atcoder.jp CodeNet
CodeChef https://www.codechef.com description2code
Codeforces https://codeforces.com description2code and Codeforces
HackerEarth https://www.hackerearth.com description2code

Problems include test cases in the form of paired inputs and outputs, as well as both correct and incorrect human solutions in a variety of languages.

Usage

Install the Cloud SDK, which provides the gsutil utility. You can then download the full data (~3GiB) with, e.g:

gsutil -m cp -r gs://dm-code_contests /tmp

The data consists of ContestProblem protocol buffers in Riegeli format. See contest_problem.proto for the protocol buffer definition and documentation of its fields.

The dataset contains three splits:

Split Filename
Training code_contests_train.riegeli-*-of-00128
Validation code_contests_valid.riegeli
Test code_contests_test.riegeli

There is example code for iterating over the dataset in C++ (in print_names.cc) and Python (in print_names_and_sources.py). For example, you can print the source and name of each problem in the validation data by installing bazel and then running:

bazel run -c opt \
  :print_names_and_sources /tmp/dm-code_contests/code_contests_valid.riegeli

Or do the same for the training data with the following command (which will print around 13000 lines of output):

bazel run -c opt \
  :print_names_and_sources /tmp/dm-code_contests/code_contests_train.riegeli*

Planned updates

We plan to update this repository with code for executing and evaluating potential solutions.

Citing this work

If you use this dataset or code, please cite this paper:

@misc{alphacode,
    title={Competition-Level Code Generation with AlphaCode},
    author={Li, Yujia and Choi, David and Chung, Junyoung and Kushman, Nate and
    Schrittwieser, Julian and Leblond, Rémi and Eccles, Tom and
    Keeling, James and Gimeno, Felix and Dal Lago, Agustin and
    Hubert, Thomas and Choy, Peter and de Masson d'Autume, Cyprien and
    Babuschkin, Igor and Chen, Xinyun and Huang, Po-Sen and Welbl, Johannes and
    Gowal, Sven and Cherepanov, Alexey and Molloy, James and
    Mankowitz, Daniel and Sutherland Robson, Esme and Kohli, Pushmeet and
    de Freitas, Nando and Kavukcuoglu, Koray and Vinyals, Oriol},
    year={2022},
    month={Feb}}

License

The code is licensed under the Apache 2.0 License.

All non-code materials provided are made available under the terms of the CC BY 4.0 license (Creative Commons Attribution 4.0 International license).

We gratefully acknowledge the contributions of the following:

Use of the third-party software, libraries code or data may be governed by separate terms and conditions or license provisions. Your use of the third-party software, libraries or code may be subject to any such terms. We make no representations here with respect to rights or abilities to use any such materials.

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022