CodeContests is a competitive programming dataset for machine-learning

Overview

CodeContests

CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode.

It consists of programming problems, from a variety of sources:

Site URL Source
Aizu https://judge.u-aizu.ac.jp CodeNet
AtCoder https://atcoder.jp CodeNet
CodeChef https://www.codechef.com description2code
Codeforces https://codeforces.com description2code and Codeforces
HackerEarth https://www.hackerearth.com description2code

Problems include test cases in the form of paired inputs and outputs, as well as both correct and incorrect human solutions in a variety of languages.

Usage

Install the Cloud SDK, which provides the gsutil utility. You can then download the full data (~3GiB) with, e.g:

gsutil -m cp -r gs://dm-code_contests /tmp

The data consists of ContestProblem protocol buffers in Riegeli format. See contest_problem.proto for the protocol buffer definition and documentation of its fields.

The dataset contains three splits:

Split Filename
Training code_contests_train.riegeli-*-of-00128
Validation code_contests_valid.riegeli
Test code_contests_test.riegeli

There is example code for iterating over the dataset in C++ (in print_names.cc) and Python (in print_names_and_sources.py). For example, you can print the source and name of each problem in the validation data by installing bazel and then running:

bazel run -c opt \
  :print_names_and_sources /tmp/dm-code_contests/code_contests_valid.riegeli

Or do the same for the training data with the following command (which will print around 13000 lines of output):

bazel run -c opt \
  :print_names_and_sources /tmp/dm-code_contests/code_contests_train.riegeli*

Planned updates

We plan to update this repository with code for executing and evaluating potential solutions.

Citing this work

If you use this dataset or code, please cite this paper:

@misc{alphacode,
    title={Competition-Level Code Generation with AlphaCode},
    author={Li, Yujia and Choi, David and Chung, Junyoung and Kushman, Nate and
    Schrittwieser, Julian and Leblond, Rémi and Eccles, Tom and
    Keeling, James and Gimeno, Felix and Dal Lago, Agustin and
    Hubert, Thomas and Choy, Peter and de Masson d'Autume, Cyprien and
    Babuschkin, Igor and Chen, Xinyun and Huang, Po-Sen and Welbl, Johannes and
    Gowal, Sven and Cherepanov, Alexey and Molloy, James and
    Mankowitz, Daniel and Sutherland Robson, Esme and Kohli, Pushmeet and
    de Freitas, Nando and Kavukcuoglu, Koray and Vinyals, Oriol},
    year={2022},
    month={Feb}}

License

The code is licensed under the Apache 2.0 License.

All non-code materials provided are made available under the terms of the CC BY 4.0 license (Creative Commons Attribution 4.0 International license).

We gratefully acknowledge the contributions of the following:

Use of the third-party software, libraries code or data may be governed by separate terms and conditions or license provisions. Your use of the third-party software, libraries or code may be subject to any such terms. We make no representations here with respect to rights or abilities to use any such materials.

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022