CodeContests is a competitive programming dataset for machine-learning

Overview

CodeContests

CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode.

It consists of programming problems, from a variety of sources:

Site URL Source
Aizu https://judge.u-aizu.ac.jp CodeNet
AtCoder https://atcoder.jp CodeNet
CodeChef https://www.codechef.com description2code
Codeforces https://codeforces.com description2code and Codeforces
HackerEarth https://www.hackerearth.com description2code

Problems include test cases in the form of paired inputs and outputs, as well as both correct and incorrect human solutions in a variety of languages.

Usage

Install the Cloud SDK, which provides the gsutil utility. You can then download the full data (~3GiB) with, e.g:

gsutil -m cp -r gs://dm-code_contests /tmp

The data consists of ContestProblem protocol buffers in Riegeli format. See contest_problem.proto for the protocol buffer definition and documentation of its fields.

The dataset contains three splits:

Split Filename
Training code_contests_train.riegeli-*-of-00128
Validation code_contests_valid.riegeli
Test code_contests_test.riegeli

There is example code for iterating over the dataset in C++ (in print_names.cc) and Python (in print_names_and_sources.py). For example, you can print the source and name of each problem in the validation data by installing bazel and then running:

bazel run -c opt \
  :print_names_and_sources /tmp/dm-code_contests/code_contests_valid.riegeli

Or do the same for the training data with the following command (which will print around 13000 lines of output):

bazel run -c opt \
  :print_names_and_sources /tmp/dm-code_contests/code_contests_train.riegeli*

Planned updates

We plan to update this repository with code for executing and evaluating potential solutions.

Citing this work

If you use this dataset or code, please cite this paper:

@misc{alphacode,
    title={Competition-Level Code Generation with AlphaCode},
    author={Li, Yujia and Choi, David and Chung, Junyoung and Kushman, Nate and
    Schrittwieser, Julian and Leblond, Rémi and Eccles, Tom and
    Keeling, James and Gimeno, Felix and Dal Lago, Agustin and
    Hubert, Thomas and Choy, Peter and de Masson d'Autume, Cyprien and
    Babuschkin, Igor and Chen, Xinyun and Huang, Po-Sen and Welbl, Johannes and
    Gowal, Sven and Cherepanov, Alexey and Molloy, James and
    Mankowitz, Daniel and Sutherland Robson, Esme and Kohli, Pushmeet and
    de Freitas, Nando and Kavukcuoglu, Koray and Vinyals, Oriol},
    year={2022},
    month={Feb}}

License

The code is licensed under the Apache 2.0 License.

All non-code materials provided are made available under the terms of the CC BY 4.0 license (Creative Commons Attribution 4.0 International license).

We gratefully acknowledge the contributions of the following:

Use of the third-party software, libraries code or data may be governed by separate terms and conditions or license provisions. Your use of the third-party software, libraries or code may be subject to any such terms. We make no representations here with respect to rights or abilities to use any such materials.

Disclaimer

This is not an official Google product.

Owner
DeepMind
DeepMind
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022