AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

Overview

AnimalAI 3

AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research towards unlocking cognitive capabilities and better understanding the space of possible minds. It is designed to facilitate testing across animals, humans, and AI.

This Repo

This repo contains the AnimalAI environment, some introductory python scripts for interacting with it, as well as the 900 tasks which were used in the original Animal-AI Olympics competition (and some others for demonstration purposes). Details of the tasks can be found on the AAI website where they can also be played and competition entries watched.

The environment is built using Unity ml-agents release 2.1.0-exp.1 (python version 0.27.0).

The AnimalAI environment and packages are currently only tested on linux (Ubuntu 20.04.2 LTS) with python 3.8 but have been reported working with python 3.6+, other linux distros and Windows and Mac.

The Unity Project for the environment is available here.

Installing

To get started you will need to:

  1. Clone this repo.
  2. Install the animalai python package and requirements by running pip install -e animalai from the root folder.
  3. Download the environment for your system:
OS Environment link
Linux v3.0
Mac v3.0
Windows v3.0

(Old v2.x versions can be found here)

Unzip the entire content of the archive to the (initially empty) env folder. On linux you may have to make the file executable by running chmod +x env/AnimalAI.x86_64. Note that the env folder should contain the AnimalAI.exe/.x86_84/.app depending on your system and any other folders in the same directory in the zip file.

Tutorials and Examples

Some example scripts to get started can be found in the examples folder. The following docs provide information for some common uses of the environment.

Manual Control

If you launch the environment directly from the executable or through the play.py script it will launch in player mode. Here you can control the agent with the following:

Keyboard Key Action
W move agent forwards
S move agent backwards
A turn agent left
D turn agent right
C switch camera
R reset environment

Citing

If you use the Animal-AI environment in your work you can cite the environment paper:

Crosby, M., Beyret, B., Shanahan, M., Hernández-Orallo, J., Cheke, L. & Halina, M.. (2020). The Animal-AI Testbed and Competition. Proceedings of the NeurIPS 2019 Competition and Demonstration Track, in Proceedings of Machine Learning Research 123:164-176 Available here.

 @InProceedings{pmlr-v123-crosby20a, 
    title = {The Animal-AI Testbed and Competition}, 
    author = {Crosby, Matthew and Beyret, Benjamin and Shanahan, Murray and Hern\'{a}ndez-Orallo, Jos\'{e} and Cheke, Lucy and Halina, Marta}, 
    booktitle = {Proceedings of the NeurIPS 2019 Competition and Demonstration Track}, 
    pages = {164--176}, 
    year = {2020}, 
    editor = {Hugo Jair Escalante and Raia Hadsell}, 
    volume = {123}, 
    series = {Proceedings of Machine Learning Research}, 
    month = {08--14 Dec}, 
    publisher = {PMLR}, 
} 

Unity ML-Agents

The Animal-AI Olympics was built using Unity's ML-Agents Toolkit.

Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., Lange, D. (2018). Unity: A General Platform for Intelligent Agents. arXiv preprint arXiv:1809.02627

Further the documentation for mlagents should be consulted if you want to make any changes.

Version History

  • v3.0 Note that due to the changes to controls and graphics agents trained on previous versions might not preform the same
    • Updated agent handling. The agent now comes to a stop more quickly when not moving forwards or backwards and accelerates slightly faster.
    • Added new objects, spawners, signs, goal types (see doc)
    • Added 3 animal skins to the player character.
    • Updated graphics for many objects. Default shading on many previously plain objects make it easier to determine location(s)/velocity.
    • Many improvements to documentation and examples.
    • Upgraded to Mlagents 2.1.0-exp.1 (ml-agents python version 0.27.0)
    • Fixed various bugs.
  • v2.2.3
    • Now you can specify multiple different arenas in a single yml config file ant the environment will cycle through them each time it resets
  • v2.2.2
    • Low quality version with improved fps. (will work on further improvments to graphics & fps later)
  • v2.2.1
    • Improve UI scaling wrt. screen size
    • Fixed an issue with cardbox objects spawning at the wrong sizes
    • Fixed an issue where the environment would time out after the time period even when health > 0 (no longer intended behaviour)
    • Improved Death Zone shader for weird Zone sizes
  • v2.2.0 Health and Basic Scripts
    • Switched to health-based system (rewards remain the same).
    • Updated overlay in play mode.
    • Allow 3D hot zones and death zones and make them 3D by default in old configs.
    • Added rewards that grow/decay (currently not configurable but will be added in next update).
    • Added basic Gym Wrapper.
    • Added basic heuristic agent for benchmarking and testing.
    • Improved all other python scripts.
    • Fixed a reset environment bug when resetting during training.
    • Added the ability to set the DecisionPeriod (frameskip) when instantiating and environment.
  • v2.1.1 bugfix
    • Fixed raycast length being less then diagonal length of standard arena
  • v2.1 beta release
    • Upgraded to ML-Agents release 2 (0.26.0)
    • New features
      • Added raycast observations
      • Added agent global position to observations
Owner
Matthew Crosby
Matthew Crosby
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022