High-resolution networks and Segmentation Transformer for Semantic Segmentation

Overview

High-resolution networks and Segmentation Transformer for Semantic Segmentation

Branches

  • This is the implementation for HRNet + OCR.
  • The PyTroch 1.1 version ia available here.
  • The PyTroch 0.4.1 version is available here.

News

  • [2021/05/04] We rephrase the OCR approach as Segmentation Transformer pdf. We will provide the updated implementation soon.

  • [2021/02/16] Based on the PaddleClas ImageNet pretrained weights, we achieve 83.22% on Cityscapes val, 59.62% on PASCAL-Context val (new SOTA), 45.20% on COCO-Stuff val (new SOTA), 58.21% on LIP val and 47.98% on ADE20K val. Please checkout openseg.pytorch for more details.

  • [2020/08/16] MMSegmentation has supported our HRNet + OCR.

  • [2020/07/20] The researchers from AInnovation have achieved Rank#1 on ADE20K Leaderboard via training our HRNet + OCR with a semi-supervised learning scheme. More details are in their Technical Report.

  • [2020/07/09] Our paper is accepted by ECCV 2020: Object-Contextual Representations for Semantic Segmentation. Notably, the reseachers from Nvidia set a new state-of-the-art performance on Cityscapes leaderboard: 85.4% via combining our HRNet + OCR with a new hierarchical mult-scale attention scheme.

  • [2020/03/13] Our paper is accepted by TPAMI: Deep High-Resolution Representation Learning for Visual Recognition.

  • HRNet + OCR + SegFix: Rank #1 (84.5) in Cityscapes leaderboard. OCR: object contextual represenations pdf. HRNet + OCR is reproduced here.

  • Thanks Google and UIUC researchers. A modified HRNet combined with semantic and instance multi-scale context achieves SOTA panoptic segmentation result on the Mapillary Vista challenge. See the paper.

  • Small HRNet models for Cityscapes segmentation. Superior to MobileNetV2Plus ....

  • Rank #1 (83.7) in Cityscapes leaderboard. HRNet combined with an extension of object context

  • Pytorch-v1.1 and the official Sync-BN supported. We have reproduced the cityscapes results on the new codebase. Please check the pytorch-v1.1 branch.

Introduction

This is the official code of high-resolution representations for Semantic Segmentation. We augment the HRNet with a very simple segmentation head shown in the figure below. We aggregate the output representations at four different resolutions, and then use a 1x1 convolutions to fuse these representations. The output representations is fed into the classifier. We evaluate our methods on three datasets, Cityscapes, PASCAL-Context and LIP.

hrnet

Besides, we further combine HRNet with Object Contextual Representation and achieve higher performance on the three datasets. The code of HRNet+OCR is contained in this branch. We illustrate the overall framework of OCR in the Figure and the equivalent Transformer pipelines:

OCR

Segmentation Transformer

Segmentation models

The models are initialized by the weights pretrained on the ImageNet. ''Paddle'' means the results are based on PaddleCls pretrained HRNet models. You can download the pretrained models from https://github.com/HRNet/HRNet-Image-Classification. Slightly different, we use align_corners = True for upsampling in HRNet.

  1. Performance on the Cityscapes dataset. The models are trained and tested with the input size of 512x1024 and 1024x2048 respectively. If multi-scale testing is used, we adopt scales: 0.5,0.75,1.0,1.25,1.5,1.75.
model Train Set Test Set OHEM Multi-scale Flip mIoU Link
HRNetV2-W48 Train Val No No No 80.9 Github/BaiduYun(Access Code:pmix)
HRNetV2-W48 + OCR Train Val No No No 81.6 Github/BaiduYun(Access Code:fa6i)
HRNetV2-W48 + OCR Train + Val Test No Yes Yes 82.3 Github/BaiduYun(Access Code:ycrk)
HRNetV2-W48 (Paddle) Train Val No No No 81.6 ---
HRNetV2-W48 + OCR (Paddle) Train Val No No No --- ---
HRNetV2-W48 + OCR (Paddle) Train + Val Test No Yes Yes --- ---
  1. Performance on the LIP dataset. The models are trained and tested with the input size of 473x473.
model OHEM Multi-scale Flip mIoU Link
HRNetV2-W48 No No Yes 55.83 Github/BaiduYun(Access Code:fahi)
HRNetV2-W48 + OCR No No Yes 56.48 Github/BaiduYun(Access Code:xex2)
HRNetV2-W48 (Paddle) No No Yes --- ---
HRNetV2-W48 + OCR (Paddle) No No Yes --- ---

Note Currently we could only reproduce HRNet+OCR results on LIP dataset with PyTorch 0.4.1.

  1. Performance on the PASCAL-Context dataset. The models are trained and tested with the input size of 520x520. If multi-scale testing is used, we adopt scales: 0.5,0.75,1.0,1.25,1.5,1.75,2.0 (the same as EncNet, DANet etc.).
model num classes OHEM Multi-scale Flip mIoU Link
HRNetV2-W48 59 classes No Yes Yes 54.1 Github/BaiduYun(Access Code:wz6v)
HRNetV2-W48 + OCR 59 classes No Yes Yes 56.2 Github/BaiduYun(Access Code:yyxh)
HRNetV2-W48 60 classes No Yes Yes 48.3 OneDrive/BaiduYun(Access Code:9uf8)
HRNetV2-W48 + OCR 60 classes No Yes Yes 50.1 Github/BaiduYun(Access Code:gtkb)
HRNetV2-W48 (Paddle) 59 classes No Yes Yes --- ---
HRNetV2-W48 (Paddle) 60 classes No Yes Yes --- ---
HRNetV2-W48 + OCR (Paddle) 59 classes No Yes Yes --- ---
HRNetV2-W48 + OCR (Paddle) 60 classes No Yes Yes --- ---
  1. Performance on the COCO-Stuff dataset. The models are trained and tested with the input size of 520x520. If multi-scale testing is used, we adopt scales: 0.5,0.75,1.0,1.25,1.5,1.75,2.0 (the same as EncNet, DANet etc.).
model OHEM Multi-scale Flip mIoU Link
HRNetV2-W48 Yes No No 36.2 Github/BaiduYun(Access Code:92gw)
HRNetV2-W48 + OCR Yes No No 39.7 Github/BaiduYun(Access Code:sjc4)
HRNetV2-W48 Yes Yes Yes 37.9 Github/BaiduYun(Access Code:92gw)
HRNetV2-W48 + OCR Yes Yes Yes 40.6 Github/BaiduYun(Access Code:sjc4)
HRNetV2-W48 (Paddle) Yes No No --- ---
HRNetV2-W48 + OCR (Paddle) Yes No No --- ---
HRNetV2-W48 (Paddle) Yes Yes Yes --- ---
HRNetV2-W48 + OCR (Paddle) Yes Yes Yes --- ---
  1. Performance on the ADE20K dataset. The models are trained and tested with the input size of 520x520. If multi-scale testing is used, we adopt scales: 0.5,0.75,1.0,1.25,1.5,1.75,2.0 (the same as EncNet, DANet etc.).
model OHEM Multi-scale Flip mIoU Link
HRNetV2-W48 Yes No No 43.1 Github/BaiduYun(Access Code:f6xf)
HRNetV2-W48 + OCR Yes No No 44.5 Github/BaiduYun(Access Code:peg4)
HRNetV2-W48 Yes Yes Yes 44.2 Github/BaiduYun(Access Code:f6xf)
HRNetV2-W48 + OCR Yes Yes Yes 45.5 Github/BaiduYun(Access Code:peg4)
HRNetV2-W48 (Paddle) Yes No No --- ---
HRNetV2-W48 + OCR (Paddle) Yes No No --- ---
HRNetV2-W48 (Paddle) Yes Yes Yes --- ---
HRNetV2-W48 + OCR (Paddle) Yes Yes Yes --- ---

Quick start

Install

  1. For LIP dataset, install PyTorch=0.4.1 following the official instructions. For Cityscapes and PASCAL-Context, we use PyTorch=1.1.0.
  2. git clone https://github.com/HRNet/HRNet-Semantic-Segmentation $SEG_ROOT
  3. Install dependencies: pip install -r requirements.txt

If you want to train and evaluate our models on PASCAL-Context, you need to install details.

pip install git+https://github.com/zhanghang1989/detail-api.git#subdirectory=PythonAPI

Data preparation

You need to download the Cityscapes, LIP and PASCAL-Context datasets.

Your directory tree should be look like this:

$SEG_ROOT/data
├── cityscapes
│   ├── gtFine
│   │   ├── test
│   │   ├── train
│   │   └── val
│   └── leftImg8bit
│       ├── test
│       ├── train
│       └── val
├── lip
│   ├── TrainVal_images
│   │   ├── train_images
│   │   └── val_images
│   └── TrainVal_parsing_annotations
│       ├── train_segmentations
│       ├── train_segmentations_reversed
│       └── val_segmentations
├── pascal_ctx
│   ├── common
│   ├── PythonAPI
│   ├── res
│   └── VOCdevkit
│       └── VOC2010
├── cocostuff
│   ├── train
│   │   ├── image
│   │   └── label
│   └── val
│       ├── image
│       └── label
├── ade20k
│   ├── train
│   │   ├── image
│   │   └── label
│   └── val
│       ├── image
│       └── label
├── list
│   ├── cityscapes
│   │   ├── test.lst
│   │   ├── trainval.lst
│   │   └── val.lst
│   ├── lip
│   │   ├── testvalList.txt
│   │   ├── trainList.txt
│   │   └── valList.txt

Train and Test

PyTorch Version Differences

Note that the codebase supports both PyTorch 0.4.1 and 1.1.0, and they use different command for training. In the following context, we use $PY_CMD to denote different startup command.

# For PyTorch 0.4.1
PY_CMD="python"
# For PyTorch 1.1.0
PY_CMD="python -m torch.distributed.launch --nproc_per_node=4"

e.g., when training on Cityscapes, we use PyTorch 1.1.0. So the command

$PY_CMD tools/train.py --cfg experiments/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml

indicates

python -m torch.distributed.launch --nproc_per_node=4 tools/train.py --cfg experiments/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml

Training

Just specify the configuration file for tools/train.py.

For example, train the HRNet-W48 on Cityscapes with a batch size of 12 on 4 GPUs:

$PY_CMD tools/train.py --cfg experiments/cityscapes/seg_hrnet_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml

For example, train the HRNet-W48 + OCR on Cityscapes with a batch size of 12 on 4 GPUs:

$PY_CMD tools/train.py --cfg experiments/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml

Note that we only reproduce HRNet+OCR on LIP dataset using PyTorch 0.4.1. So we recommend to use PyTorch 0.4.1 if you want to train on LIP dataset.

Testing

For example, evaluating HRNet+OCR on the Cityscapes validation set with multi-scale and flip testing:

python tools/test.py --cfg experiments/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml \
                     TEST.MODEL_FILE hrnet_ocr_cs_8162_torch11.pth \
                     TEST.SCALE_LIST 0.5,0.75,1.0,1.25,1.5,1.75 \
                     TEST.FLIP_TEST True

Evaluating HRNet+OCR on the Cityscapes test set with multi-scale and flip testing:

python tools/test.py --cfg experiments/cityscapes/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml \
                     DATASET.TEST_SET list/cityscapes/test.lst \
                     TEST.MODEL_FILE hrnet_ocr_trainval_cs_8227_torch11.pth \
                     TEST.SCALE_LIST 0.5,0.75,1.0,1.25,1.5,1.75 \
                     TEST.FLIP_TEST True

Evaluating HRNet+OCR on the PASCAL-Context validation set with multi-scale and flip testing:

python tools/test.py --cfg experiments/pascal_ctx/seg_hrnet_ocr_w48_cls59_520x520_sgd_lr1e-3_wd1e-4_bs_16_epoch200.yaml \
                     DATASET.TEST_SET testval \
                     TEST.MODEL_FILE hrnet_ocr_pascal_ctx_5618_torch11.pth \
                     TEST.SCALE_LIST 0.5,0.75,1.0,1.25,1.5,1.75,2.0 \
                     TEST.FLIP_TEST True

Evaluating HRNet+OCR on the LIP validation set with flip testing:

python tools/test.py --cfg experiments/lip/seg_hrnet_w48_473x473_sgd_lr7e-3_wd5e-4_bs_40_epoch150.yaml \
                     DATASET.TEST_SET list/lip/testvalList.txt \
                     TEST.MODEL_FILE hrnet_ocr_lip_5648_torch04.pth \
                     TEST.FLIP_TEST True \
                     TEST.NUM_SAMPLES 0

Evaluating HRNet+OCR on the COCO-Stuff validation set with multi-scale and flip testing:

python tools/test.py --cfg experiments/cocostuff/seg_hrnet_ocr_w48_520x520_ohem_sgd_lr1e-3_wd1e-4_bs_16_epoch110.yaml \
                     DATASET.TEST_SET list/cocostuff/testval.lst \
                     TEST.MODEL_FILE hrnet_ocr_cocostuff_3965_torch04.pth \
                     TEST.SCALE_LIST 0.5,0.75,1.0,1.25,1.5,1.75,2.0 \
                     TEST.MULTI_SCALE True TEST.FLIP_TEST True

Evaluating HRNet+OCR on the ADE20K validation set with multi-scale and flip testing:

python tools/test.py --cfg experiments/ade20k/seg_hrnet_ocr_w48_520x520_ohem_sgd_lr2e-2_wd1e-4_bs_16_epoch120.yaml \
                     DATASET.TEST_SET list/ade20k/testval.lst \
                     TEST.MODEL_FILE hrnet_ocr_ade20k_4451_torch04.pth \
                     TEST.SCALE_LIST 0.5,0.75,1.0,1.25,1.5,1.75,2.0 \
                     TEST.MULTI_SCALE True TEST.FLIP_TEST True

Other applications of HRNet

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and 
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and 
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI},
  year={2019}
}

@article{YuanCW19,
  title={Object-Contextual Representations for Semantic Segmentation},
  author={Yuhui Yuan and Xilin Chen and Jingdong Wang},
  booktitle={ECCV},
  year={2020}
}

Reference

[1] Deep High-Resolution Representation Learning for Visual Recognition. Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, Bin Xiao. Accepted by TPAMI. download

[2] Object-Contextual Representations for Semantic Segmentation. Yuhui Yuan, Xilin Chen, Jingdong Wang. download

Acknowledgement

We adopt sync-bn implemented by InplaceABN for PyTorch 0.4.1 experiments and the official sync-bn provided by PyTorch for PyTorch 1.10 experiments.

We adopt data precosessing on the PASCAL-Context dataset, implemented by PASCAL API.

Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022