Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

Related tags

Deep LearningRecycleD
Overview

RecycleD

Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM Multimedia 2021 Brave New Ideas (BNI) Track.

Brief Introduction

The core idea of RecycleD is to reuse the pre-trained discriminator in SR WGAN to directly assess the image perceptual quality.

overall_pipeline

In addition, we use the Salient Object Detection (SOD) networks and Image Residuals to produce weight matrices to improve the PatchGAN discriminator.

Requirements

  • Python 3.6
  • NumPy 1.17
  • PyTorch 1.2
  • torchvision 0.4
  • tensorboardX 1.4
  • scikit-image 0.16
  • Pillow 5.2
  • OpenCV-Python 3.4
  • SciPy 1.4

Datasets

For Training

We adopt the commonly used DIV2K as the training set to train SR WGAN.
For training, we use the HR images in "DIV2K/DIV2K_train_HR/", and LR images in "DIV2K/DIV2K_train_LR_bicubic/X4/". (The upscale factor is x4.)
For validation, we use the Set5 & Set14 datasets. You can download these benchmark datasets from LapSRN project page or My Baidu disk with password srbm.

For Test

We use PIPAL, Ma's dataset, BAPPS-Superres as super-resolved image quality datasets.
We use LIVE-itW and KonIQ-10k as artificially distorted image quality datasets.

Getting Started

See the directory shell.

Pre-trained Models

If you want to test the discriminators, you need to download the pre-trained models, and put them into the directory pretrained_models.
Meanwhile, you may need to modify the model location options in the shell scripts so that these model files can be loaded correctly.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Citation

If you find this repository is useful for your research, please cite the following paper.

(1) BibTeX:

(2) ACM Reference Format:

Yunan Zhu, Haichuan Ma, Jialun Peng, Dong Liu, and Zhiwei Xiong. 2021.
Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN.
In Proceedings of the 29th ACM International Conference on Multimedia (MM ’21), October 20–24, 2021, Virtual Event, China.
ACM, NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3474085.3479234

About Brave New Ideas (BNI) Track

Following paragraphs were directly excerpted from the Call for Brave New Ideas of ACM Multimedia 2021.

The Brave New Ideas (BNI) Track of ACM Multimedia 2021 is calling for innovative papers that open up new vistas for multimedia research and stimulate activity towards addressing new, long term challenges of interest to the multimedia research community. Submissions should be scientifically rigorous and also introduce fresh perspectives.

We understand "brave" to mean that a paper (or an area of research introduced by the paper) has great potential for high impact. For the proposed algorithm, technology or application to be understood as high impact, the authors should be able to argue that their proposal is important to solving problems, to supporting new perspectives, or to providing services that directly affect people's lives.

We understand "new" to mean that an idea has not yet been proposed before. The component techniques and technologies may exist, but their integration must be novel.

BNI FAQ
1.What type of papers are suitable for the BNI track?
The BNI track invites papers with brave and new ideas, where "brave" means “out-of-the-box thinking” ideas that may generate high impact and "new" means ideas not yet been proposed before. The highlight of BNI 2021 is "Multimedia for Social Good", where innovative research showcasing the benefit to the general public are encouraged.
2.What is the format requirement for BNI papers?
The paper format requirement is consistent with that of the regular paper.
4.How selective is the BNI track?
The BNI track is at least as competitive as the regular track. A BNI paper is regarded as respectful if not more compared to a regular paper. It is even more selective than the regular one with the acceptance rate at ~10% in previous years.
6.How are the BNI papers published?
The BNI papers are officially published in the conference proceeding.

Acknowledgements

This code borrows partially from the repo BasicSR.
We use the SOD networks from BASNet and U-2-Net.

Owner
Yunan Zhu
MEng student at EEIS, USTC. [email protected]
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Nicholas Lee 3 Jan 09, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023