A PyTorch implementation of DenseNet.

Overview

A PyTorch Implementation of DenseNet

This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Convolutional Networks by G. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. This implementation gets a CIFAR-10+ error rate of 4.77 with a 100-layer DenseNet-BC with a growth rate of 12. Their official implementation and links to many other third-party implementations are available in the liuzhuang13/DenseNet repo on GitHub.

Why DenseNet?

As this table from the DenseNet paper shows, it provides competitive state of the art results on CIFAR-10, CIFAR-100, and SVHN.

Why yet another DenseNet implementation?

PyTorch is a great new framework and it's nice to have these kinds of re-implementations around so that they can be integrated with other PyTorch projects.

How do you know this implementation is correct?

Interestingly while implementing this, I had a lot of trouble getting it to converge and looked at every part of the code closer than I usually would. I compared all of the model's hidden states and gradients with the official implementation to make sure my code was correct and even trained a VGG-style network on CIFAR-10 with the training code here. It turns out that I uncovered a new critical PyTorch bug (now fixed) that was causing this.

I have left around my original message about how this isn't working and the things that I have checked in this document. I think this should be interesting for other people to see my development and debugging strategies when having issues implementing a model that's known to converge. I also started this PyTorch forum thread, which has a few other discussion points. You may also be interested in my script that compares PyTorch gradients to Torch gradients and my script that numerically checks PyTorch gradients.

My convergence issues were due to a critical PyTorch bug related to using torch.cat with convolutions with cuDNN enabled (which it is by default when CUDA is used). This bug caused incorrect gradients and the fix to this bug is to disable cuDNN (which doesn't have to be done anymore because it's fixed). The oversight in my debugging strategies that caused me to not find this error is that I did not think to disable cuDNN. Until now, I have assumed that the cuDNN option in frameworks are bug-free, but have learned that this is not always the case. I may have also found something if I would have numerically debugged torch.cat layers with convolutions instead of fully connected layers.

Adam fixed the PyTorch bug that caused this in this PR and has been merged into Torch's master branch. If you are interested in using the DenseNet code in this repository, make sure your PyTorch version contains this PR and was downloaded after 2017-02-10.

What does the PyTorch compute graph of the model look like?

You can see the compute graph here, which I created with make_graph.py, which I copied from Adam Paszke's gist. Adam says PyTorch will soon have a better way to create compute graphs.

How does this implementation perform?

By default, this repo trains a 100-layer DenseNet-BC with an growth rate of 12 on the CIFAR-10 dataset with data augmentations. Due to GPU memory sizes, this is the largest model I am able to run. The paper reports a final test error of 4.51 with this architecture and we obtain a final test error of 4.77.

Why don't people use ADAM instead of SGD for training ResNet-style models?

I also tried training a net with ADAM and found that it didn't converge as well with the default hyper-parameters compared to SGD with a reasonable learning rate schedule.

What about the non-BC version?

I haven't tested this as thoroughly, you should make sure it's working as expected if you plan to use and modify it. Let me know if you find anything wrong with it.

A paradigm for ML code

I like to include a few features in my projects that I don't see in some other re-implementations that are present in this repo. The training code in train.py uses argparse so the batch size and some other hyper-params can easily be changed and as the model is training, progress is written out to csv files in a work directory also defined by the arguments. Then a separate script plot.py plots the progress written out by the training script. The training script calls plot.py after every epoch, but it can importantly be run on its own so figures can be tweaked without re-running the entire experiment.

Help wanted: Improving memory utilization and multi-GPU support

I think there are ways to improve the memory utilization in this code as in the the official space-efficient Torch implementation. I also would be interested in multi-GPU support.

Running the code and viewing convergence

First install PyTorch (ideally in an anaconda3 distribution). ./train.py will create a model, start training it, and save progress to args.save, which is work/cifar10.base by default. The training script will call plot.py after every epoch to create plots from the saved progress.

Citations

The following is a BibTeX entry for the DenseNet paper that you should cite if you use this model.

@article{Huang2016Densely,
  author = {Huang, Gao and Liu, Zhuang and Weinberger, Kilian Q.},
  title = {Densely Connected Convolutional Networks},
  journal = {arXiv preprint arXiv:1608.06993},
  year = {2016}
}

If you use this implementation, please also consider citing this implementation and code repository with the following BibTeX or plaintext entry. The BibTeX entry requires the url LaTeX package.

@misc{amos2017densenet,
  title = {{A PyTorch Implementation of DenseNet}},
  author = {Amos, Brandon and Kolter, J. Zico},
  howpublished = {\url{https://github.com/bamos/densenet.pytorch}},
  note = {Accessed: [Insert date here]}
}

Brandon Amos, J. Zico Kolter
A PyTorch Implementation of DenseNet
https://github.com/bamos/densenet.pytorch.
Accessed: [Insert date here]

Licensing

This repository is Apache-licensed.

Owner
Brandon Amos
Brandon Amos
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette ๐ŸŽถ Imagenette, gentille imagenette, Imagenette, je te plumerai. ๐ŸŽถ (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Springer Link Download Module for Python

โ™ž pupalink A simple Python module to search and download books from SpringerLink. ๐Ÿงช This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
Chinese Mandarin tts text-to-speech ไธญๆ–‡ (ๆ™ฎ้€š่ฏ) ่ฏญ้Ÿณ ๅˆๆˆ , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(ๆ™ฎ้€š่ฏ๏ผ‰. Many modifications t

291 Jan 02, 2023
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022