Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Related tags

Deep LearningIIC
Overview

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework

Official code for paper, Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework [ACMMM'20].

Arxiv paper Project page

Requirements

This is my experimental enviroment.

  • PyTorch 1.3.0

It seems that PyTorch 1.7.0 is not compatible with current codes, causing poor performance. #9

  • python 3.7.4
  • accimage

Inter-intra contrastive (IIC) framework

For samples, we have

  • Inter-positives: samples with same labels, not used for self-supervised learning;
  • Inter-negatives: different samples, or samples with different indexes;
  • Intra-positives: data from the same sample, in different views / from different augmentations;
  • Intra-negatives: data from the same sample while some kind of information has been broken down. In video case, temporal information has been destoried.

Our work makes use of all usable parts (in this classification category) to form an inter-intra contrastive framework. The experiments here are mainly based on Contrastive Multiview Coding.

It is flexible to extend this framework to other contrastive learning methods which use negative samples, such as MoCo and SimCLR.

image

Highlights

Make the most of data for contrastive learning.

Except for inter-negative samples, all possible data are used to help train the network. This inter-intra learning framework can make the most use of data in contrastive learning.

Flexibility of the framework

The inter-intra learning framework can be extended to

  • Different contrastive learning methods: CMC, MoCo, SimCLR ...
  • Different intra-negative generation methods: frame repeating, frame shuffling ...
  • Different backbones: C3D, R3D, R(2+1)D, I3D ...

Updates

Oct. 1, 2020 - Results using C3D and R(2+1)D are added; fix random seed more tightly. Aug. 26, 2020 - Add pretrained weights for R3D.

Usage of this repo

Notification: we have added codes to fix random seed more tightly for better reproducibility. However, results in our paper used previous random seed settings. Therefore, there should be tiny differences for the performance from that reported in our paper. To reproduce retrieval results same as our paper, please use the provided model weights.

Data preparation

You can download UCF101/HMDB51 dataset from official website: UCF101 and HMDB51. Then decoded videos to frames.
I highly recommend the pre-computed optical flow images and resized RGB frames in this repo.

If you use pre-computed frames, the folder architecture is like path/to/dataset/video_id/frames.jpg. If you decode frames on your own, the folder architecture may be like path/to/dataset/class_name/video_id/frames.jpg, in which way, you need pay more attention to the corresponding paths in dataset preparation.

For pre-computed frames, find rgb_folder, u_folder and v_folder in datasets/ucf101.py for UCF101 datasets and change them to meet your environment. Please note that all those modalities are prepared even though in some settings, optical flow data are not used train the model.

If you do not prepare optical flow data, simply set u_folder=rgb_folder and v_folder=rgb_folder should help to avoid errors.

Train self-supervised learning part

python train_ssl.py --dataset=ucf101

This equals to

python train_ssl.py --dataset=ucf101 --model=r3d --modality=res --neg=repeat

This default setting uses frame repeating as intra-negative samples for videos. R3D is used.

We use two views in our experiments. View #1 is a RGB video clip, View #2 can be RGB/Res/Optical flow video clip. Residual video clips are default modality for View #2. You can use --modality to try other modalities. Intra-negative samples are generated from View #1.

It may be wired to use only one optical flow channel u or v. We use only one channel to make it possible for only one model to handle inputs from different modalities. It is also an optional setting that using different models to handle each modality.

Retrieve video clips

python retrieve_clips.py --ckpt=/path/to/your/model --dataset=ucf101 --merge=True

One model is used to handle different views/modalities. You can set --modality to decide which modality to use. When setting --merge=True, RGB for View #1 and the specific modality for View #2 will be jointly used for joint retrieval.

By default training setting, it is very easy to get over 30%@top1 for video retrieval in ucf101 and around 13%@top1 in hmdb51 without joint retrieval.

Fine-tune model for video recognition

python ft_classify.py --ckpt=/path/to/your/model --dataset=ucf101

Testing will be automatically conducted at the end of training.

Or you can use

python ft_classify.py --ckpt=/path/to/your/model --dataset=ucf101 --mode=test

In this way, only testing is conducted using the given model.

Note: The accuracies using residual clips are not stable for validation set (this may also caused by limited validation samples), the final testing part will use the best model on validation set.

If everything is fine, you can achieve around 70% accuracy on UCF101. The results will vary from each other with different random seeds.

Results

Retrieval results

The table lists retrieval results on UCF101 split 1. We reimplemented CMC and report its results. Other results are from corresponding paper. VCOP, VCP, CMC, PRP, and ours are based on R3D network backbone.

Method top1 top5 top10 top20 top50
Jigsaw 19.7 28.5 33.5 40.0 49.4
OPN 19.9 28.7 34.0 40.6 51.6
R3D (random) 9.9 18.9 26.0 35.5 51.9
VCOP 14.1 30.3 40.4 51.1 66.5
VCP 18.6 33.6 42.5 53.5 68.1
CMC 26.4 37.7 45.1 53.2 66.3
Ours (repeat + res) 36.5 54.1 62.9 72.4 83.4
Ours (repeat + u) 41.8 60.4 69.5 78.4 87.7
Ours (shuffle + res) 34.6 53.0 62.3 71.7 82.4
Ours (shuffle + v) 42.4 60.9 69.2 77.1 86.5
PRP 22.8 38.5 46.7 55.2 69.1
RTT 26.1 48.5 59.1 69.6 82.8
MemDPC-RGB 20.2 40.4 52.4 64.7 -
MemDPC-Flow 40.2 63.2 71.9 78.6 -

Recognition results

We only use R3D as our network backbone. In this table, all reported results are pre-trained on UCF101.

Usually, 1. using Resnet-18-3D, R(2+1)D or deeper networks; 2.pre-training on larger datasets; 3. using larger input resolutions; 4. combining with audios or other features will also help.

Method UCF101 HMDB51
Jigsaw 51.5 22.5
O3N (res) 60.3 32.5
OPN 56.3 22.1
OPN (res) 71.8 36.7
CrossLearn 58.7 27.2
CMC (3 views) 59.1 26.7
R3D (random) 54.5 23.4
ImageNet-inflated 60.3 30.7
3D ST-puzzle 65.8 33.7
VCOP (R3D) 64.9 29.5
VCOP (R(2+1)D) 72.4 30.9
VCP (R3D) 66.0 31.5
Ours (repeat + res, R3D) 72.8 35.3
Ours (repeat + u, R3D) 72.7 36.8
Ours (shuffle + res, R3D) 74.4 38.3
Ours (shuffle + v, R3D) 67.0 34.0
PRP (R3D) 66.5 29.7
PRP (R(2+1)D) 72.1 35.0

Residual clips + 3D CNN The residual clips with 3D CNNs are effective, especially for scratch training. More information about this part can be found in Rethinking Motion Representation: Residual Frames with 3D ConvNets for Better Action Recognition (previous but more detailed version) and Motion Representation Using Residual Frames with 3D CNN (short version with better results).

The key code for this part is

shift_x = torch.roll(x,1,2)
x = ((shift_x -x) + 1)/2

which is slightly different from that in papers.

We also reimplement VCP in this repo. By simply using residual clips, significant improvements can be obtained for both video retrieval and video recognition.

Pretrained weights

Pertrained weights from self-supervised training step: R3D(google drive).

With this model, for video retrieval, you should achieve

  • 33.4% @top1 with --modality=res --merge=False
  • 34.8% @top1 with --modality=rgb --merge=False
  • 36.5% @top1 with--modality=res --merge=True

Finetuned weights for action recognition: R3D(google drive).

With this model, for video recognition, you should achieve 72.7% @top1 with python ft_classify.py --model=r3d --modality=res --mode=test -ckpt=./path/to/model --dataset=ucf101 --split=1. This result is better than that reported in paper. Results may be further improved with strong data augmentations.

For any questions, please contact Li TAO ([email protected]).

Results for other network architectures

Results are averaged on 3 splits without using optical flow. R3D and R21D are the same as VCOP / VCP / PRP.

UCF101 top1 top5 top10 top20 top50 Recong
C3D (VCOP) 12.5 29.0 39.0 50.6 66.9 65.6
C3D (VCP) 17.3 31.5 42.0 52.6 67.7 68.5
C3D (PRP) 23.2 38.1 46.0 55.7 68.4 69.1
C3D (ours, repeat) 31.9 48.2 57.3 67.1 79.1 70.0
C3D (ours, shuffle) 28.9 45.4 55.5 66.2 78.8 69.7
R21D (VCOP) 10.7 25.9 35.4 47.3 63.9 72.4
R21D (VCP) 19.9 33.7 42.0 50.5 64.4 66.3
R21D (PRP) 20.3 34.0 41.9 51.7 64.2 72.1
R21D (ours, repeat) 34.7 51.7 60.9 69.4 81.9 72.4
R21D (ours, shuffle) 30.2 45.6 55.0 64.4 77.6 73.3
Res18-3D (ours, repeat) 36.8 54.1 63.1 72.0 83.3 72.4
Res18-3D (ours, shuffle) 33.0 49.2 59.1 69.1 80.6 73.1
HMDB51 top1 top5 top10 top20 top50 Recong
C3D (VCOP) 7.4 22.6 34.4 48.5 70.1 28.4
C3D (VCP) 7.8 23.8 35.3 49.3 71.6 32.5
C3D (PRP) 10.5 27.2 40.4 56.2 75.9 34.5
C3D (ours, repeat) 9.9 29.6 42.0 57.3 78.4 30.8
C3D (ours, shuffle) 11.5 31.3 43.9 60.1 80.3 29.7
R21D (VCOP) 5.7 19.5 30.7 45.6 67.0 30.9
R21D (VCP) 6.7 21.3 32.7 49.2 73.3 32.2
R21D (PRP) 8.2 25.3 36.2 51.0 73.0 35.0
R21D (ours, repeat) 12.7 33.3 45.8 61.6 81.3 34.0
R21D (ours, shuffle) 12.6 31.9 44.2 59.9 80.7 31.2
Res18-3D (ours, repeat) 15.5 34.4 48.9 63.8 83.8 34.3
Res18-3D (ours, shuffle) 12.4 33.6 46.9 63.2 83.5 34.3

Citation

If you find our work helpful for your research, please consider citing the paper

@article{tao2020selfsupervised,
    title={Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework},
    author={Li Tao and Xueting Wang and Toshihiko Yamasaki},
    journal={arXiv preprint arXiv:2008.02531},
    year={2020},
    eprint={2008.02531},
}

If you find the residual input helpful for video-related tasks, please consider citing the paper

@article{tao2020rethinking,
  title={Rethinking Motion Representation: Residual Frames with 3D ConvNets for Better Action Recognition},
  author={Tao, Li and Wang, Xueting and Yamasaki, Toshihiko},
  journal={arXiv preprint arXiv:2001.05661},
  year={2020}
}

@article{tao2020motion,
  title={Motion Representation Using Residual Frames with 3D CNN},
  author={Tao, Li and Wang, Xueting and Yamasaki, Toshihiko},
  journal={arXiv preprint arXiv:2006.13017},
  year={2020}
}

Acknowledgements

Part of this code is inspired by CMC and VCOP.

Owner
Li Tao
Li Tao
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Bytedance Inc. 2.5k Jan 06, 2023
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022