Multi-Task Deep Neural Networks for Natural Language Understanding

Overview

License: MIT Travis-CI

New Release
We released Adversarial training for both LM pre-training/finetuning and f-divergence.

Large-scale Adversarial training for LMs: ALUM code.
If you want to use the old version, please use following cmd to clone the code:
git clone -b v0.1 https://github.com/namisan/mt-dnn.git

Multi-Task Deep Neural Networks for Natural Language Understanding

This PyTorch package implements the Multi-Task Deep Neural Networks (MT-DNN) for Natural Language Understanding, as described in:

Xiaodong Liu*, Pengcheng He*, Weizhu Chen and Jianfeng Gao
Multi-Task Deep Neural Networks for Natural Language Understanding
ACL 2019
*: Equal contribution

Xiaodong Liu, Pengcheng He, Weizhu Chen and Jianfeng Gao
Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding
arXiv version

Pengcheng He, Xiaodong Liu, Weizhu Chen and Jianfeng Gao
Hybrid Neural Network Model for Commonsense Reasoning
arXiv version

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao and Jiawei Han
On the Variance of the Adaptive Learning Rate and Beyond
arXiv version

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao and Tuo Zhao
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization
arXiv version

Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng, Xueyun Zhu, Emmanuel Awa, Pengcheng He, Weizhu Chen, Hoifung Poon, Guihong Cao, Jianfeng Gao
The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural Language Understanding
arXiv version

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon and Jianfeng Gao
Adversarial Training for Large Neural Language Models
arXiv version

Hao Cheng and Xiaodong Liu and Lis Pereira and Yaoliang Yu and Jianfeng Gao
Posterior Differential Regularization with f-divergence for Improving Model Robustness
arXiv version

Quickstart

Setup Environment

Install via pip:

  1. python3.6
    Reference to download and install : https://www.python.org/downloads/release/python-360/

  2. install requirements
    > pip install -r requirements.txt

Use docker:

  1. Pull docker
    > docker pull allenlao/pytorch-mt-dnn:v0.5

  2. Run docker
    > docker run -it --rm --runtime nvidia allenlao/pytorch-mt-dnn:v1.2 bash
    Please refer to the following link if you first use docker: https://docs.docker.com/

Train a toy MT-DNN model

  1. Download data
    > sh download.sh
    Please refer to download GLUE dataset: https://gluebenchmark.com/

  2. Preprocess data
    > sh experiments/glue/prepro.sh

  3. Training
    > python train.py

Note that we ran experiments on 4 V100 GPUs for base MT-DNN models. You may need to reduce batch size for other GPUs.

GLUE Result reproduce

  1. MTL refinement: refine MT-DNN (shared layers), initialized with the pre-trained BERT model, via MTL using all GLUE tasks excluding WNLI to learn a new shared representation.
    Note that we ran this experiment on 8 V100 GPUs (32G) with a batch size of 32.

    • Preprocess GLUE data via the aforementioned script
    • Training:
      >scripts\run_mt_dnn.sh
  2. Finetuning: finetune MT-DNN to each of the GLUE tasks to get task-specific models.
    Here, we provide two examples, STS-B and RTE. You can use similar scripts to finetune all the GLUE tasks.

    • Finetune on the STS-B task
      > scripts\run_stsb.sh
      You should get about 90.5/90.4 on STS-B dev in terms of Pearson/Spearman correlation.
    • Finetune on the RTE task
      > scripts\run_rte.sh
      You should get about 83.8 on RTE dev in terms of accuracy.

SciTail & SNIL Result reproduce (Domain Adaptation)

  1. Domain Adaptation on SciTail
    >scripts\scitail_domain_adaptation_bash.sh

  2. Domain Adaptation on SNLI
    >scripts\snli_domain_adaptation_bash.sh

Sequence Labeling Task

  1. Preprocess data
    a) Download NER data to data/ner including: {train/valid/test}.txt
    b) Convert NER data to the canonical format: > python experiments\ner\prepro.py --data data\ner --output_dir data\canonical_data
    c) Preprocess the canonical data to the MT-DNN format: > python prepro_std.py --root_dir data\canonical_data --task_def experiments\ner\ner_task_def.yml --model bert-base-uncased

  2. Training
    > python train.py --data_dir <data-path> --init_checkpoint <bert-base-uncased> --train_dataset squad,squad-v2 --test_dataset squad,squad-v2 --task_def experiments\squad\squad_task_def.yml

Question Answer Task

  1. Preprocess data
    a) Download SQuAD data to data/squad including: {train/valid}.txt and then change file name to: {squad_train/squad_dev}.json
    b) Convert data to the MT-DNN format: > python experiments\squad\squad_prepro.py --root_dir data\canonical_data --task_def experiments\squad\squad_task_def.yml --model bert-base-uncased

  2. Training
    > python train.py --data_dir <data-path> --init_checkpoint <bert-model> --train_dataset ner --test_dataset ner --task_def experiments\ner\ner_task_def.yml

SMART

Adv training at the fine-tuning stages: > python train.py --data_dir <data-path> --init_checkpoint <bert/mt-dnn-model> --train_dataset mnli --test_dataset mnli_matched,mnli_mismatched --task_def experiments\glue\glue_task_def.yml --adv_train --adv_opt 1

HNN

The code to reproduce HNN is under hnn folder, to reproduce the results of HNN, run

> hnn/script/hnn_train_large.sh

Extract embeddings

  1. Extracting embeddings of a pair text example
    >python extractor.py --do_lower_case --finput input_examples\pair-input.txt --foutput input_examples\pair-output.json --bert_model bert-base-uncased --checkpoint mt_dnn_models\mt_dnn_base.pt
    Note that the pair of text is split by a special token |||. You may refer input_examples\pair-output.json as example.

  2. Extracting embeddings of a single sentence example
    >python extractor.py --do_lower_case --finput input_examples\single-input.txt --foutput input_examples\single-output.json --bert_model bert-base-uncased --checkpoint mt_dnn_models\mt_dnn_base.pt

Speed up Training

  1. Gradient Accumulation
    If you have small GPUs, you may need to use the gradient accumulation to make training stable.
    For example, if you use the flag: --grad_accumulation_step 4 during the training, the actual batch size will be batch_size * 4.

  2. FP16 The current version of MT-DNN also supports FP16 training, and please install apex.
    You just need to turn on the flag during the training: --fp16
    Please refer the script: scripts\run_mt_dnn_gc_fp16.sh

Convert Tensorflow BERT model to the MT-DNN format

Here, we go through how to convert a Chinese Tensorflow BERT model into mt-dnn format.

  1. Download BERT model from the Google bert web: https://github.com/google-research/bert

  2. Run the following script for MT-DNN format
    python scripts\convert_tf_to_pt.py --tf_checkpoint_root chinese_L-12_H-768_A-12\ --pytorch_checkpoint_path chinese_L-12_H-768_A-12\bert_base_chinese.pt

TODO

  • Publish pretrained Tensorflow checkpoints.

FAQ

Did you share the pretrained mt-dnn models?

Yes, we released the pretrained shared embedings via MTL which are aligned to BERT base/large models: mt_dnn_base.pt and mt_dnn_large.pt.
To obtain the similar models:

  1. run the >sh scripts\run_mt_dnn.sh, and then pick the best checkpoint based on the average dev preformance of MNLI/RTE.
  2. strip the task-specific layers via scritps\strip_model.py.

Why SciTail/SNLI do not enable SAN?

For SciTail/SNLI tasks, the purpose is to test generalization of the learned embedding and how easy it is adapted to a new domain instead of complicated model structures for a direct comparison with BERT. Thus, we use a linear projection on the all domain adaptation settings.

What is the difference between V1 and V2

The difference is in the QNLI dataset. Please refere to the GLUE official homepage for more details. If you want to formulate QNLI as pair-wise ranking task as our paper, make sure that you use the old QNLI data.
Then run the prepro script with flags: > sh experiments/glue/prepro.sh --old_glue
If you have issues to access the old version of the data, please contact the GLUE team.

Did you fine-tune single task for your GLUE leaderboard submission?

We can use the multi-task refinement model to run the prediction and produce a reasonable result. But to achieve a better result, it requires a fine-tuneing on each task. It is worthing noting the paper in arxiv is a littled out-dated and on the old GLUE dataset. We will update the paper as we mentioned below.

Notes and Acknowledgments

BERT pytorch is from: https://github.com/huggingface/pytorch-pretrained-BERT
BERT: https://github.com/google-research/bert
We also used some code from: https://github.com/kevinduh/san_mrc

Related Projects/Codebase

  1. Pretrained UniLM: https://github.com/microsoft/unilm
  2. Pretrained Response Generation Model: https://github.com/microsoft/DialoGPT
  3. Internal MT-DNN repo: https://github.com/microsoft/mt-dnn

How do I cite MT-DNN?

@inproceedings{liu2019mt-dnn,
    title = "Multi-Task Deep Neural Networks for Natural Language Understanding",
    author = "Liu, Xiaodong and He, Pengcheng and Chen, Weizhu and Gao, Jianfeng",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P19-1441",
    pages = "4487--4496"
}


@article{liu2019mt-dnn-kd,
  title={Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding},
  author={Liu, Xiaodong and He, Pengcheng and Chen, Weizhu and Gao, Jianfeng},
  journal={arXiv preprint arXiv:1904.09482},
  year={2019}
}


@article{he2019hnn,
  title={A Hybrid Neural Network Model for Commonsense Reasoning},
  author={He, Pengcheng and Liu, Xiaodong and Chen, Weizhu and Gao, Jianfeng},
  journal={arXiv preprint arXiv:1907.11983},
  year={2019}
}


@article{liu2019radam,
  title={On the Variance of the Adaptive Learning Rate and Beyond},
  author={Liu, Liyuan and Jiang, Haoming and He, Pengcheng and Chen, Weizhu and Liu, Xiaodong and Gao, Jianfeng and Han, Jiawei},
  journal={arXiv preprint arXiv:1908.03265},
  year={2019}
}


@article{jiang2019smart,
  title={SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization},
  author={Jiang, Haoming and He, Pengcheng and Chen, Weizhu and Liu, Xiaodong and Gao, Jianfeng and Zhao, Tuo},
  journal={arXiv preprint arXiv:1911.03437},
  year={2019}
}


@article{liu2020mtmtdnn,
  title={The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural Language Understanding},
  author={Liu, Xiaodong and Wang, Yu and Ji, Jianshu and Cheng, Hao and Zhu, Xueyun and Awa, Emmanuel and He, Pengcheng and Chen, Weizhu and Poon, Hoifung and Cao, Guihong and Jianfeng Gao},
  journal={arXiv preprint arXiv:2002.07972},
  year={2020}
}


@article{liu2020alum,
  title={Adversarial Training for Large Neural Language Models},
  author={Liu, Xiaodong and Cheng, Hao and He, Pengcheng and Chen, Weizhu and Wang, Yu and Poon, Hoifung and Gao, Jianfeng},
  journal={arXiv preprint arXiv:2004.08994},
  year={2020}
}

@article{cheng2020posterior,
  title={Posterior Differential Regularization with f-divergence for Improving Model Robustness},
  author={Cheng, Hao and Liu, Xiaodong and Pereira, Lis and Yu, Yaoliang and Gao, Jianfeng},
  journal={arXiv preprint arXiv:2010.12638},
  year={2020}
}

Contact Information

For help or issues using MT-DNN, please submit a GitHub issue.

For personal communication related to this package, please contact Xiaodong Liu ([email protected]), Yu Wang ([email protected]), Pengcheng He ([email protected]), Weizhu Chen ([email protected]), Jianshu Ji ([email protected]), Hao Cheng ([email protected]) or Jianfeng Gao ([email protected]).

Owner
Xiaodong
And if you gaze long into an abyss, the abyss also gazes into you --Friedrich Nietzsche
Xiaodong
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022