DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

Overview

DirectVoxGO

DirectVoxGO (Direct Voxel Grid Optimization, see our paper) reconstructs a scene representation from a set of calibrated images capturing the scene.

  • NeRF-comparable quality for synthesizing novel views from our scene representation.
  • Super-fast convergence: Our 15 mins/scene vs. NeRF's 10~20+ hrs/scene.
  • No cross-scene pre-training required: We optimize each scene from scratch.
  • Better rendering speed: Our <1 secs vs. NeRF's 29 secs to synthesize a 800x800 images.

Below run-times (mm:ss) of our optimization progress are measured on a machine with a single RTX 2080 Ti GPU.

github_teaser.mp4

Update

  • 2021.11.23: Support CO3D dataset.
  • 2021.11.23: Initial release. Issue page is disabled for now. Feel free to contact [email protected] if you have any questions.

Installation

git clone [email protected]:sunset1995/DirectVoxGO.git
cd DirectVoxGO
pip install -r requirements.txt

Pytorch installation is machine dependent, please install the correct version for your machine. The tested version is pytorch 1.8.1 with python 3.7.4.

Dependencies (click to expand)
  • PyTorch, numpy: main computation.
  • scipy, lpips: SSIM and LPIPS evaluation.
  • tqdm: progress bar.
  • mmcv: config system.
  • opencv-python: image processing.
  • imageio, imageio-ffmpeg: images and videos I/O.

Download: datasets, trained models, and rendered test views

Directory structure for the datasets (click to expand; only list used files)
data
├── nerf_synthetic     # Link: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
│   └── [chair|drums|ficus|hotdog|lego|materials|mic|ship]
│       ├── [train|val|test]
│       │   └── r_*.png
│       └── transforms_[train|val|test].json
│
├── Synthetic_NSVF     # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/Synthetic_NSVF.zip
│   └── [Bike|Lifestyle|Palace|Robot|Spaceship|Steamtrain|Toad|Wineholder]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0_train|1_val|2_test]_*.png
│       └── pose
│           └── [0_train|1_val|2_test]_*.txt
│
├── BlendedMVS         # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/BlendedMVS.zip
│   └── [Character|Fountain|Jade|Statues]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0|1|2]_*.png
│       └── pose
│           └── [0|1|2]_*.txt
│
├── TanksAndTemple     # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/TanksAndTemple.zip
│   └── [Barn|Caterpillar|Family|Ignatius|Truck]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0|1|2]_*.png
│       └── pose
│           └── [0|1|2]_*.txt
│
├── deepvoxels     # Link: https://drive.google.com/drive/folders/1ScsRlnzy9Bd_n-xw83SP-0t548v63mPH
│   └── [train|validation|test]
│       └── [armchair|cube|greek|vase]
│           ├── intrinsics.txt
│           ├── rgb/*.png
│           └── pose/*.txt
│
└── co3d               # Link: https://github.com/facebookresearch/co3d
    └── [donut|teddybear|umbrella|...]
        ├── frame_annotations.jgz
        ├── set_lists.json
        └── [129_14950_29917|189_20376_35616|...]
            ├── images
            │   └── frame*.jpg
            └── masks
                └── frame*.png

Synthetic-NeRF, Synthetic-NSVF, BlendedMVS, Tanks&Temples, DeepVoxels datasets

We use the datasets organized by NeRF, NSVF, and DeepVoxels. Download links:

Download all our trained models and rendered test views at this link to our logs.

CO3D dataset

We also support the recent Common Objects In 3D dataset. Our method only performs per-scene reconstruction and no cross-scene generalization.

GO

Train

To train lego scene and evaluate testset PSNR at the end of training, run:

$ python run.py --config configs/nerf/lego.py --render_test

Use --i_print and --i_weights to change the log interval.

Evaluation

To only evaluate the testset PSNR, SSIM, and LPIPS of the trained lego without re-training, run:

$ python run.py --config configs/nerf/lego.py --render_only --render_test \
                                              --eval_ssim --eval_lpips_vgg

Use --eval_lpips_alex to evaluate LPIPS with pre-trained Alex net instead of VGG net.

Reproduction

All config files to reproduce our results:

$ ls configs/*
configs/blendedmvs:
Character.py  Fountain.py  Jade.py  Statues.py

configs/nerf:
chair.py  drums.py  ficus.py  hotdog.py  lego.py  materials.py  mic.py  ship.py

configs/nsvf:
Bike.py  Lifestyle.py  Palace.py  Robot.py  Spaceship.py  Steamtrain.py  Toad.py  Wineholder.py

configs/tankstemple:
Barn.py  Caterpillar.py  Family.py  Ignatius.py  Truck.py

configs/deepvoxels:
armchair.py  cube.py  greek.py  vase.py

Your own config files

Check the comments in configs/default.py for the configuable settings. The default values reproduce our main setup reported in our paper. We use mmcv's config system. To create a new config, please inherit configs/default.py first and then update the fields you want. Below is an example from configs/blendedmvs/Character.py:

_base_ = '../default.py'

expname = 'dvgo_Character'
basedir = './logs/blended_mvs'

data = dict(
    datadir='./data/BlendedMVS/Character/',
    dataset_type='blendedmvs',
    inverse_y=True,
    white_bkgd=True,
)

Development and tuning guide

Extention to new dataset

Adjusting the data related config fields to fit your camera coordinate system is recommend before implementing a new one. We provide two visualization tools for debugging.

  1. Inspect the camera and the allocated BBox.
    • Export via --export_bbox_and_cams_only {filename}.npz:
      python run.py --config configs/nerf/mic.py --export_bbox_and_cams_only cam_mic.npz
    • Visualize the result:
      python tools/vis_train.py cam_mic.npz
  2. Inspect the learned geometry after coarse optimization.
    • Export via --export_coarse_only {filename}.npz (assumed coarse_last.tar available in the train log):
      python run.py --config configs/nerf/mic.py --export_coarse_only coarse_mic.npz
    • Visualize the result:
      python tools/vis_volume.py coarse_mic.npz 0.001 --cam cam_mic.npz
Inspecting the cameras & BBox Inspecting the learned coarse volume

Speed and quality tradeoff

We have reported some ablation experiments in our paper supplementary material. Setting N_iters, N_rand, num_voxels, rgbnet_depth, rgbnet_width to larger values or setting stepsize to smaller values typically leads to better quality but need more computation. Only stepsize is tunable in testing phase, while all the other fields should remain the same as training.

Acknowledgement

The code base is origined from an awesome nerf-pytorch implementation, but it becomes very different from the code base now.

Owner
sunset
A Ph.D. candidate working on computer vision tasks. Recently focusing on 3D modeling.
sunset
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022