E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

Related tags

Deep Learninge2ec
Overview

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

city

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation
Tao Zhang, Shiqing Wei, Shunping Ji
CVPR 2022

Any questions or discussions are welcomed!

Installation

Please see INSTALL.md.

Performances

We re-tested the speed on a single RTX3090.

Dtataset AP Image size FPS
SBD val 59.2 512×512 59.60
COCO test-dev 33.8 original size 35.25
KINS val 34.0 768×2496 12.39
Cityscapes val 34.0 1216×2432 8.58

The accuracy and inference speed of the contours at different stages on SBD val set. We also re-tested the speed on a single RTX3090.

stage init coarse final final-dml
AP 51.4 55.9 58.8 59.2
FPS 101.73 91.35 67.48 59.6

The accuracy and inference speed of the contours at different stages on coco val set.

stage init coarse final final-dml
AP 27.8 31.6 33.5 33.6
FPS 80.97 72.81 42.55 35.25

Testing

Testing on COCO

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the COCO dataset according to the INSTALL.md.

  3. Test:

    # testing segmentation accuracy on coco val set
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True
    # testing detection accuracy on coco val set
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --eval bbox
    # testing the speed
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --stage coarse
    # testing on coco test-dev set, run and submit data/result/results.json
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --dataset coco_test
    

Testing on SBD

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the SBD dataset according to the INSTALL.md.

  3. Test:

    # testing segmentation accuracy on SBD
    python test.py sbd --checkpoint /path/to/model_sbd.pth
    # testing detection accuracy on SBD
    python test.py sbd --checkpoint /path/to/model_sbd.pth --eval bbox
    # testing the speed
    python test.py sbd --checkpoint /path/to/model_sbd.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py sbd --checkpoint /path/to/model_sbd.pth --stage coarse
    

Testing on KINS

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the KINS dataset according to the INSTALL.md.

  3. Test:

    Maybe you will find some troules, such as object of type <class 'numpy.float64'> cannot be safely interpreted as an integer. Please modify the /path/to/site-packages/pycocotools/cooceval.py. Replace np.round((0.95 - .5) / .05) in lines 506 and 507 with int(np.round((0.95 - .5) / .05)).

    # testing segmentation accuracy on KINS
    python test.py kitti --checkpoint /path/to/model_kitti.pth
    # testing detection accuracy on KINS
    python test.py kitti --checkpoint /path/to/model_kitti.pth --eval bbox
    # testing the speed
    python test.py kitti --checkpoint /path/to/model_kitti.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py kitti --checkpoint /path/to/model_kitti.pth --stage coarse
    

Testing on Cityscapes

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the KINS dataset according to the INSTALL.md.

  3. Test:

    We will soon release the code for e2ec with multi component detection. Currently only supported for testing e2ec performance on cityscapes dataset.

    # testing segmentation accuracy on Cityscapes with coco evaluator
    python test.py cityscapesCoco --checkpoint /path/to/model_cityscapes.pth
    # with cityscapes official evaluator
    python test.py cityscapes --checkpoint /path/to/model_cityscapes.pth
    # testing the detection accuracy
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --eval bbox
    # testing the speed
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --stage coarse
    # testing on test set, run and submit the result file
    python test.py cityscapes --checkpoint /path/to/model_cityscapes.pth \
    --dataset cityscapes_test
    

Evaluate boundary AP

  1. Install the Boundary IOU API according boundary iou.

  2. Testing segmentation accuracy with coco evaluator.

  3. Using offline evaluation pipeline.

    python /path/to/boundary_iou_api/tools/coco_instance_evaluation.py \
        --gt-json-file /path/to/annotation_file.json \
        --dt-json-file data/result/result.json \
        --iou-type boundary
    

Visualization

  1. Download the pretrained model.

  2. Visualize:

    # inference and visualize the images with coco pretrained model
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True
    # you can using other pretrained model, such as cityscapes 
    python visualize.py cityscapesCoco /path/to/images \
    --checkpoint /path/to/model_cityscapes.pth
    # if you want to save the visualisation, please specify --output_dir
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True \
    --output_dir /path/to/output_dir
    # visualize the results at different stage
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True --stage coarse
    # you can reset the score threshold, default is 0.3
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True --ct_score 0.1
    # if you want to filter some of the jaggedness caused by dml 
    # please using post_process
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True \
    --with_post_process True
    

Training

We have only released the code for single GPU training, multi GPU training with ddp will be released soon.

Training on SBD

python train_net.py sbd --bs $batch_size
# if you do not want to use dinamic matching loss (significantly improves 
# contour detail but introduces jaggedness), please set --dml as False
python train_net.py sbd --bs $batch_size --dml False

Training on KINS

python train_net.py kitti --bs $batch_size

Training on Cityscapes

python train_net.py cityscapesCoco --bs $batch_size

Training on COCO

In fact it is possible to achieve the same accuracy without training so many epochs.

# first to train with adam
python train_net.py coco --bs $batch_size
# then finetune with sgd
python train_net.py coco_finetune --bs $batch_size \
--type finetune --checkpoint data/model/139.pth

Training on the other dataset

If the annotations is in coco style:

  1. Add dataset information to dataset/info.py.

  2. Modify the configs/coco.py, reset the train.dataset , model.heads['ct_hm'] and test.dataset. Maybe you also need to change the train.epochs, train.optimizer['milestones'] and so on.

  3. Train the network.

    python train_net.py coco --bs $batch_size
    

If the annotations is not in coco style:

  1. Prepare dataset/train/your_dataset.py and dataset/test/your_dataset.py by referring to dataset/train/base.py and dataset/test/base.py.

  2. Prepare evaluator/your_dataset/snake.py by referring to evaluator/coco/snake.py.

  3. Prepare configs/your_dataset.py and by referring to configs/base.py.

  4. Train the network.

    python train_net.py your_dataset --bs $batch_size
    

Citation

If you find this project helpful for your research, please consider citing using BibTeX below:

@article{zhang2022e2ec,
  title={E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation},
  author={Zhang, Tao and Wei, Shiqing and Ji, Shunping},
  journal={arXiv preprint arXiv:2203.04074},
  year={2022}
}

Acknowledgement

Code is largely based on Deep Snake. Thanks for their wonderful works.

Owner
zhangtao
zhangtao
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021