E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

Related tags

Deep Learninge2ec
Overview

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

city

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation
Tao Zhang, Shiqing Wei, Shunping Ji
CVPR 2022

Any questions or discussions are welcomed!

Installation

Please see INSTALL.md.

Performances

We re-tested the speed on a single RTX3090.

Dtataset AP Image size FPS
SBD val 59.2 512×512 59.60
COCO test-dev 33.8 original size 35.25
KINS val 34.0 768×2496 12.39
Cityscapes val 34.0 1216×2432 8.58

The accuracy and inference speed of the contours at different stages on SBD val set. We also re-tested the speed on a single RTX3090.

stage init coarse final final-dml
AP 51.4 55.9 58.8 59.2
FPS 101.73 91.35 67.48 59.6

The accuracy and inference speed of the contours at different stages on coco val set.

stage init coarse final final-dml
AP 27.8 31.6 33.5 33.6
FPS 80.97 72.81 42.55 35.25

Testing

Testing on COCO

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the COCO dataset according to the INSTALL.md.

  3. Test:

    # testing segmentation accuracy on coco val set
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True
    # testing detection accuracy on coco val set
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --eval bbox
    # testing the speed
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --stage coarse
    # testing on coco test-dev set, run and submit data/result/results.json
    python test.py coco --checkpoint /path/to/model_coco.pth --with_nms True --dataset coco_test
    

Testing on SBD

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the SBD dataset according to the INSTALL.md.

  3. Test:

    # testing segmentation accuracy on SBD
    python test.py sbd --checkpoint /path/to/model_sbd.pth
    # testing detection accuracy on SBD
    python test.py sbd --checkpoint /path/to/model_sbd.pth --eval bbox
    # testing the speed
    python test.py sbd --checkpoint /path/to/model_sbd.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py sbd --checkpoint /path/to/model_sbd.pth --stage coarse
    

Testing on KINS

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the KINS dataset according to the INSTALL.md.

  3. Test:

    Maybe you will find some troules, such as object of type <class 'numpy.float64'> cannot be safely interpreted as an integer. Please modify the /path/to/site-packages/pycocotools/cooceval.py. Replace np.round((0.95 - .5) / .05) in lines 506 and 507 with int(np.round((0.95 - .5) / .05)).

    # testing segmentation accuracy on KINS
    python test.py kitti --checkpoint /path/to/model_kitti.pth
    # testing detection accuracy on KINS
    python test.py kitti --checkpoint /path/to/model_kitti.pth --eval bbox
    # testing the speed
    python test.py kitti --checkpoint /path/to/model_kitti.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py kitti --checkpoint /path/to/model_kitti.pth --stage coarse
    

Testing on Cityscapes

  1. Download the pretrained model here or Baiduyun(password is e2ec).

  2. Prepared the KINS dataset according to the INSTALL.md.

  3. Test:

    We will soon release the code for e2ec with multi component detection. Currently only supported for testing e2ec performance on cityscapes dataset.

    # testing segmentation accuracy on Cityscapes with coco evaluator
    python test.py cityscapesCoco --checkpoint /path/to/model_cityscapes.pth
    # with cityscapes official evaluator
    python test.py cityscapes --checkpoint /path/to/model_cityscapes.pth
    # testing the detection accuracy
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --eval bbox
    # testing the speed
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --type speed
    # testing the contours of specified stage(init/coarse/final/final-dml)
    python test.py cityscapesCoco \
    --checkpoint /path/to/model_cityscapes.pth --stage coarse
    # testing on test set, run and submit the result file
    python test.py cityscapes --checkpoint /path/to/model_cityscapes.pth \
    --dataset cityscapes_test
    

Evaluate boundary AP

  1. Install the Boundary IOU API according boundary iou.

  2. Testing segmentation accuracy with coco evaluator.

  3. Using offline evaluation pipeline.

    python /path/to/boundary_iou_api/tools/coco_instance_evaluation.py \
        --gt-json-file /path/to/annotation_file.json \
        --dt-json-file data/result/result.json \
        --iou-type boundary
    

Visualization

  1. Download the pretrained model.

  2. Visualize:

    # inference and visualize the images with coco pretrained model
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True
    # you can using other pretrained model, such as cityscapes 
    python visualize.py cityscapesCoco /path/to/images \
    --checkpoint /path/to/model_cityscapes.pth
    # if you want to save the visualisation, please specify --output_dir
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True \
    --output_dir /path/to/output_dir
    # visualize the results at different stage
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True --stage coarse
    # you can reset the score threshold, default is 0.3
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True --ct_score 0.1
    # if you want to filter some of the jaggedness caused by dml 
    # please using post_process
    python visualize.py coco /path/to/images \
    --checkpoint /path/to/model_coco.pth --with_nms True \
    --with_post_process True
    

Training

We have only released the code for single GPU training, multi GPU training with ddp will be released soon.

Training on SBD

python train_net.py sbd --bs $batch_size
# if you do not want to use dinamic matching loss (significantly improves 
# contour detail but introduces jaggedness), please set --dml as False
python train_net.py sbd --bs $batch_size --dml False

Training on KINS

python train_net.py kitti --bs $batch_size

Training on Cityscapes

python train_net.py cityscapesCoco --bs $batch_size

Training on COCO

In fact it is possible to achieve the same accuracy without training so many epochs.

# first to train with adam
python train_net.py coco --bs $batch_size
# then finetune with sgd
python train_net.py coco_finetune --bs $batch_size \
--type finetune --checkpoint data/model/139.pth

Training on the other dataset

If the annotations is in coco style:

  1. Add dataset information to dataset/info.py.

  2. Modify the configs/coco.py, reset the train.dataset , model.heads['ct_hm'] and test.dataset. Maybe you also need to change the train.epochs, train.optimizer['milestones'] and so on.

  3. Train the network.

    python train_net.py coco --bs $batch_size
    

If the annotations is not in coco style:

  1. Prepare dataset/train/your_dataset.py and dataset/test/your_dataset.py by referring to dataset/train/base.py and dataset/test/base.py.

  2. Prepare evaluator/your_dataset/snake.py by referring to evaluator/coco/snake.py.

  3. Prepare configs/your_dataset.py and by referring to configs/base.py.

  4. Train the network.

    python train_net.py your_dataset --bs $batch_size
    

Citation

If you find this project helpful for your research, please consider citing using BibTeX below:

@article{zhang2022e2ec,
  title={E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation},
  author={Zhang, Tao and Wei, Shiqing and Ji, Shunping},
  journal={arXiv preprint arXiv:2203.04074},
  year={2022}
}

Acknowledgement

Code is largely based on Deep Snake. Thanks for their wonderful works.

Owner
zhangtao
zhangtao
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022