The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Related tags

Deep LearningVAEBM
Overview

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper)

Zhisheng Xiao·Karsten Kreis·Jan Kautz·Arash Vahdat


VAEBM trains an energy network to refine the data distribution learned by an NVAE, where the enery network and the VAE jointly define an Energy-based model. The NVAE is pretrained before training the energy network, and please refer to NVAE's implementation for more details about constructing and training NVAE.

Set up datasets

We trained on several datasets, including CIFAR10, CelebA64, LSUN Church 64 and CelebA HQ 256. For large datasets, we store the data in LMDB datasets for I/O efficiency. Check here for information regarding dataset preparation.

Training NVAE

We use the following commands on each dataset for training the NVAE backbone. To train NVAEs, please use its original codebase with commands given here.

CIFAR-10 (8x 16-GB GPUs)

python train.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID --dataset cifar10 \
      --num_channels_enc 128 --num_channels_dec 128 --epochs 400 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 1 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --num_groups_per_scale 30 --batch_size 32 \
      --weight_decay_norm 1e-1 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

CelebA-64 (8x 16-GB GPUs)

python train.py --data  $DATA_DIR/celeba64_lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_64 \
      --num_channels_enc 48 --num_channels_dec 48 --epochs 50 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 3 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 5 \
      --batch_size 32 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --warmup_epochs 1 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

CelebA-HQ-256 (8x 32-GB GPUs)

python train.py -data  $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_256 \
      --num_channels_enc 32 --num_channels_dec 32 --epochs 200 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
      --num_postprocess_blocks 1 --weight_decay_norm 1e-2 --num_x_bits 5 --num_latent_scales 5 --num_groups_per_scale 4 \
      --num_nf 2 --batch_size 8 --fast_adamax  --num_mixture_dec 1 \
      --weight_decay_norm_anneal  --weight_decay_norm_init 1e1 --learning_rate 6e-3 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

LSUN Churches Outdoor 64 (8x 16-GB GPUs)

python train.py --data $DATA_DIR/LSUN/ --root $CHECKPOINT_DIR --save $EXPR_ID --dataset lsun_church_64 \
      --num_channels_enc 48 --num_channels_dec 48 --epochs 60 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 3 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 5 \
      --batch_size 32 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --warmup_epochs 1 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

Training VAEBM

We use the following commands on each dataset for training VAEBM. Note that you need to train the NVAE on corresponding dataset before running the training command here. After training the NVAE, pass the path of the checkpoint to the --checkpoint argument.

Note that the training of VAEBM will eventually explode (See Appendix E of our paper), and therefore it is important to save checkpoint regularly. After the training explodes, stop running the code and use the last few saved checkpoints for testing.

CIFAR-10

We train VAEBM on CIFAR-10 using one 32-GB V100 GPU.

python train_VAEBM.py  --checkpoint ./checkpoints/cifar10/checkpoint.pt --experiment cifar10_exp1
--dataset cifar10 --im_size 32 --data ./data/cifar10 --num_steps 10 
--wd 3e-5 --step_size 8e-5 --total_iter 30000 --alpha_s 0.2 --lr 4e-5 --max_p 0.6 
--anneal_step 5000. --batch_size 32 --n_channel 128

CelebA 64

We train VAEBM on CelebA 64 using one 32-GB V100 GPU.

python train_VAEBM.py --checkpoint ./checkpoints/celeba_64/checkpoint.pt --experiment celeba64_exp1 --dataset celeba_64 
--im_size 64 --lr 5e-5 --batch_size 32 --n_channel 64 --num_steps 10 --use_mu_cd --wd 3e-5 --step_size 5e-6 --total_iter 30000 
--alpha_s 0.2 

LSUN Church 64

We train VAEBM on LSUN Church 64 using one 32-GB V100 GPU.

python train_VAEBM.py --checkpoint ./checkpoints/lsun_church/checkpoint.pt --experiment lsunchurch_exp1 --dataset lsun_church 
--im_size 64 --batch_size 32 --n_channel 64 --num_steps 10 --use_mu_cd --wd 3e-5 --step_size 4e-6 --total_iter 30000 --alpha_s 0.2 --lr 4e-5 
--use_buffer --max_p 0.6 --anneal_step 5000

CelebA HQ 256

We train VAEBM on CelebA HQ 256 using four 32-GB V100 GPUs.

python train_VAEBM_distributed.py --checkpoint ./checkpoints/celeba_256/checkpoint.pt --experiment celeba256_exp1 --dataset celeba_256
--num_process_per_node 4 --im_size 256 --batch_size 4 --n_channel 64 --num_steps 6 --use_mu_cd --wd 3e-5 --step_size 3e-6 
--total_iter 9000 --alpha_s 0.3 --lr 4e-5 --use_buffer --max_p 0.6 --anneal_step 3000 --buffer_size 2000

Sampling from VAEBM

To generate samples from VAEBM after training, run sample_VAEBM.py, and it will generate 50000 test images in your given path. When sampling, we typically use longer Langvin dynamics than training for better sample quality, see Appendix E of the paper for the step sizes and number of steps we use to obtain test samples for each dataset. Other parameters that ensure successfully loading the VAE and energy network are the same as in the training codes.

For example, the script used to sample CIFAR-10 is

python sample_VAEBM.py --checkpoint ./checkpoints/cifar_10/checkpoint.pt --ebm_checkpoint ./saved_models/cifar_10/cifar_exp1/EBM.pth 
--dataset cifar10 --im_size 32 --batch_size 40 --n_channel 128 --num_steps 16 --step_size 8e-5 

For CelebA 64,

python sample_VAEBM.py --checkpoint ./checkpoints/celeba_64/checkpoint.pt --ebm_checkpoint ./saved_models/celeba_64/celeba64_exp1/EBM.pth 
--dataset celeba_64 --im_size 64 --batch_size 40 --n_channel 64 --num_steps 20 --step_size 5e-6 

For LSUN Church 64,

python sample_VAEBM.py --checkpoint ./checkpoints/lsun_church/checkpoint.pt --ebm_checkpoint ./saved_models/lsun_chruch/lsunchurch_exp1/EBM.pth 
--dataset lsun_church --im_size 64 --batch_size 40 --n_channel 64 --num_steps 20 --step_size 4e-6 

For CelebA HQ 256,

python sample_VAEBM.py --checkpoint ./checkpoints/celeba_256/checkpoint.pt --ebm_checkpoint ./saved_models/celeba_256/celeba256_exp1/EBM.pth 
--dataset celeba_256 --im_size 256 --batch_size 10 --n_channel 64 --num_steps 24 --step_size 3e-6 

Evaluation

After sampling, use the Tensorflow or PyTorch implementation to compute the FID scores. For example, when using the Tensorflow implementation, you can obtain the FID score by saving the training images in /path/to/training_images and running the script:

python fid.py /path/to/training_images /path/to/sampled_images

For CIFAR-10, the training statistics can be downloaded from here, and the FID score can be computed by running

python fid.py /path/to/sampled_images /path/to/precalculated_stats.npz

For the Inception Score, save samples in a single numpy array with pixel values in range [0, 255] and simply run

python ./thirdparty/inception_score.py --sample_dir /path/to/sampled_images

where the code for computing Inception Score is adapted from here.

License

Please check the LICENSE file. VAEBM may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Bibtex

Cite our paper using the following bibtex item:

@inproceedings{
xiao2021vaebm,
title={VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models},
author={Zhisheng Xiao and Karsten Kreis and Jan Kautz and Arash Vahdat},
booktitle={International Conference on Learning Representations},
year={2021}
}
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022