Code Release for Learning to Adapt to Evolving Domains

Related tags

Deep LearningEAML
Overview

EAML

Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020)

Prerequisites

  • PyTorch >= 0.4.0 (with suitable CUDA and CuDNN version)
  • torchvision >= 0.2.1
  • Python3
  • Numpy
  • argparse
  • PIL

Dataset

Rotated MNIST: https://drive.google.com/file/d/1eaw42sg4Cgm34790AW_SKGCSkFosugl2/view?usp=sharing

Training

EAML 

%run eaml.py rot_mnist_28/ --lip-balance 0.2 --lip-jth 0.01 --epochs 500 --lr-in 0.03 --lr-out 0.003 

JAN 

%run JAN.py rot_mnist_28/ --lip-balance 0.2 --lip-jth 0.01 --epochs 500 --lr-in 0.03 --lr-out 0.003

Source 

%run source.py rot_mnist_28/ --lip-balance 0.2 --lip-jth 0.01 --epochs 500 --lr-out 0.003

Acknowledgement

This code is implemented based on the JAN (Joint Adaptation Networks) code, and it is our pleasure to acknowledge their contributions. The meta-learning code is adapted from https://github.com/dragen1860/MAML-Pytorch/.

Citation

If you use this code for your research, please consider citing:

@inproceedings{NEURIPS2020_fd69dbe2,
 author = {Liu, Hong and Long, Mingsheng and Wang, Jianmin and Wang, Yu},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {22338--22348},
 publisher = {Curran Associates, Inc.},
 title = {Learning to Adapt to Evolving Domains},
 url = {https://proceedings.neurips.cc/paper/2020/file/fd69dbe29f156a7ef876a40a94f65599-Paper.pdf},
 volume = {33},
 year = {2020}
}


Contact

If you have any problem about our code, feel free to contact

Owner
Undergraduate student majoring in electronic engineering
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022