MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Overview

Documentation: https://mmgeneration.readthedocs.io/

Introduction

English | 简体中文

MMGeneration is a powerful toolkit for generative models, especially for GANs now. It is based on PyTorch and MMCV. The master branch works with PyTorch 1.5+.

Major Features

  • High-quality Training Performance: We currently support training on Unconditional GANs, Internal GANs, and Image Translation Models. Support for conditional models will come soon.
  • Powerful Application Toolkit: A plentiful toolkit containing multiple applications in GANs is provided to users. GAN interpolation, GAN projection, and GAN manipulations are integrated into our framework. It's time to play with your GANs! (Tutorial for applications)
  • Efficient Distributed Training for Generative Models: For the highly dynamic training in generative models, we adopt a new way to train dynamic models with MMDDP. (Tutorial for DDP)
  • New Modular Design for Flexible Combination: A new design for complex loss modules is proposed for customizing the links between modules, which can achieve flexible combination among different modules. (Tutorial for new modular design)
Training Visualization
GAN Interpolation
GAN Projector
GAN Manipulation

Highlight

  • Positional Encoding as Spatial Inductive Bias in GANs (CVPR2021) has been released in MMGeneration. [Config], [Project Page]

Changelog

v0.1.0 was released on 20/04/2021. Please refer to changelog.md for details and release history.

ModelZoo

These methods have been carefully studied and supported in our frameworks:

Unconditional GANs (click to collapse)
Image2Image Translation (click to collapse)
Internal Learing (click to collapse)

License

This project is released under the Apache 2.0 license. Some operations in MMGeneration are with other licenses instead of Apache2.0. Please refer to LICENSES.md for the careful check, if you are using our code for commercial matters.

Installation

Please refer to get_started.md for installation.

Getting Started

Please see get_started.md for the basic usage of MMGeneration. docs/quick_run.md can offer full guidance for quick run. For other details and tutorials, please go to our documentation.

Contributing

We appreciate all contributions to improve MMGeneration. Please refer to CONTRIBUTING.md in MMCV for more details about the contributing guideline.

Citation

If you find this project useful in your research, please consider cite:

@misc{2021mmgeneration,
    title={{MMGeneration}: OpenMMLab Generative Model Toolbox and Benchmark},
    author={MMGeneration Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmgeneration}},
    year={2021}
}

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
  • MMGeneration: OpenMMLab's next-generation toolbox for generative models.
Comments
  • Fix s3 readme of 1.x branch

    Fix s3 readme of 1.x branch

    Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.

    Motivation

    Please describe the motivation of this PR and the goal you want to achieve through this PR.

    Modification

    Please briefly describe what modification is made in this PR.

    Who can help? @ them here!

    BC-breaking (Optional)

    Does the modification introduce changes that break the backward-compatibility of the downstream repositories? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.

    Use cases (Optional)

    If this PR introduces a new feature, it is better to list some use cases here, and update the documentation.

    Checklist

    Before PR:

    • [ ] I have read and followed the workflow indicated in the CONTRIBUTING.md to create this PR.
    • [ ] Pre-commit or linting tools indicated in CONTRIBUTING.md are used to fix the potential lint issues.
    • [ ] Bug fixes are covered by unit tests, the case that causes the bug should be added in the unit tests.
    • [ ] New functionalities are covered by complete unit tests. If not, please add more unit test to ensure the correctness.
    • [ ] The documentation has been modified accordingly, including docstring or example tutorials.

    After PR:

    • [ ] If the modification has potential influence on downstream or other related projects, this PR should be tested with some of those projects.
    • [ ] CLA has been signed and all committers have signed the CLA in this PR.
    opened by plyfager 0
  • Fix s3 readme dev-1.x

    Fix s3 readme dev-1.x

    Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.

    Motivation

    Please describe the motivation of this PR and the goal you want to achieve through this PR.

    Modification

    Please briefly describe what modification is made in this PR.

    Who can help? @ them here!

    BC-breaking (Optional)

    Does the modification introduce changes that break the backward-compatibility of the downstream repositories? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.

    Use cases (Optional)

    If this PR introduces a new feature, it is better to list some use cases here, and update the documentation.

    Checklist

    Before PR:

    • [ ] I have read and followed the workflow indicated in the CONTRIBUTING.md to create this PR.
    • [ ] Pre-commit or linting tools indicated in CONTRIBUTING.md are used to fix the potential lint issues.
    • [ ] Bug fixes are covered by unit tests, the case that causes the bug should be added in the unit tests.
    • [ ] New functionalities are covered by complete unit tests. If not, please add more unit test to ensure the correctness.
    • [ ] The documentation has been modified accordingly, including docstring or example tutorials.

    After PR:

    • [ ] If the modification has potential influence on downstream or other related projects, this PR should be tested with some of those projects.
    • [ ] CLA has been signed and all committers have signed the CLA in this PR.
    opened by plyfager 0
  • Fix s3 readme with refined metrics

    Fix s3 readme with refined metrics

    Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.

    Motivation

    Please describe the motivation of this PR and the goal you want to achieve through this PR.

    Modification

    Please briefly describe what modification is made in this PR.

    Who can help? @ them here!

    BC-breaking (Optional)

    Does the modification introduce changes that break the backward-compatibility of the downstream repositories? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.

    Use cases (Optional)

    If this PR introduces a new feature, it is better to list some use cases here, and update the documentation.

    Checklist

    Before PR:

    • [ ] I have read and followed the workflow indicated in the CONTRIBUTING.md to create this PR.
    • [ ] Pre-commit or linting tools indicated in CONTRIBUTING.md are used to fix the potential lint issues.
    • [ ] Bug fixes are covered by unit tests, the case that causes the bug should be added in the unit tests.
    • [ ] New functionalities are covered by complete unit tests. If not, please add more unit test to ensure the correctness.
    • [ ] The documentation has been modified accordingly, including docstring or example tutorials.

    After PR:

    • [ ] If the modification has potential influence on downstream or other related projects, this PR should be tested with some of those projects.
    • [ ] CLA has been signed and all committers have signed the CLA in this PR.
    opened by plyfager 0
  • Latent-Diffusion Models

    Latent-Diffusion Models

    Model/Dataset/Scheduler description

    Recent trends show that diffusion models, especially latent diffusion models, have been very successful for image/video generation tasks. While the current codebase supports IDDPM, I believe supporting LDM for tasks like unconditional image generation or even text-to-image generation would be very helpful for the openmmlab family.

    Open source status

    • [ ] The model implementation is available
    • [ ] The model weights are available.

    Provide useful links for the implementation

    https://github.com/CompVis/latent-diffusion

    opened by Adamdad 5
  • add colab page

    add colab page

    Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.

    Motivation

    Please describe the motivation of this PR and the goal you want to achieve through this PR.

    Modification

    Please briefly describe what modification is made in this PR.

    Who can help? @ them here!

    BC-breaking (Optional)

    Does the modification introduce changes that break the backward-compatibility of the downstream repositories? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.

    Use cases (Optional)

    If this PR introduces a new feature, it is better to list some use cases here, and update the documentation.

    Checklist

    Before PR:

    • [ ] I have read and followed the workflow indicated in the CONTRIBUTING.md to create this PR.
    • [ ] Pre-commit or linting tools indicated in CONTRIBUTING.md are used to fix the potential lint issues.
    • [ ] Bug fixes are covered by unit tests, the case that causes the bug should be added in the unit tests.
    • [ ] New functionalities are covered by complete unit tests. If not, please add more unit test to ensure the correctness.
    • [ ] The documentation has been modified accordingly, including docstring or example tutorials.

    After PR:

    • [ ] If the modification has potential influence on downstream or other related projects, this PR should be tested with some of those projects.
    • [ ] CLA has been signed and all committers have signed the CLA in this PR.
    opened by plyfager 0
Releases(v0.7.2)
  • v0.7.2(Sep 14, 2022)

    Improvements

    • [Docs] Fix typos in docs. by @RangeKing in https://github.com/open-mmlab/mmgeneration/pull/425
    • [Docs] Add doc for StyleGAN-Ada by @plyfager in https://github.com/open-mmlab/mmgeneration/pull/391
    • [Fix] Update MMCV_MAX to 1.7 by @LeoXing1996 in https://github.com/open-mmlab/mmgeneration/pull/436
    • [CI] update github workflow, circleci and github templates by @LeoXing1996 in https://github.com/open-mmlab/mmgeneration/pull/431

    New Contributors

    • @RangeKing made their first contribution in https://github.com/open-mmlab/mmgeneration/pull/425
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0rc0(Sep 1, 2022)

    MMGeneration 1.0.0rc0 is the first version of MMGeneration 1.x, a part of the OpenMMLab 2.0 projects.

    Built upon the new training engine, MMGeneration 1.x unifies the interfaces of dataset, models, evaluation, and visualization.

    And there are some BC-breaking changes. Please check the migration tutorial for more details.

    Source code(tar.gz)
    Source code(zip)
  • v0.7.1(Apr 30, 2022)

    Fix bugs and Improvements

    • Support train_dataloader, val_dataloader and test_dataloader settings (#281)
    • Fix ada typo (#283)
    • Add chinese application tutorial (#284)
    • Add chinese document of ddp training (#286)

    Contributors

    @plyfager @LeoXing1996

    Source code(tar.gz)
    Source code(zip)
  • v0.7.0(Apr 2, 2022)

    Highlights

    • Support training of StyleGANv3 (#275, #277)
    • Support adaptive discriminator augmentation (#276)

    New Features

    • Support passing training arguments in static unconditional gan (#275)
    • Support dynamic EMA, now you can define momentum updating policy (#261)
    • Add multi machine distribute train (#267)

    Fix bugs and Improvements

    • Add brief installation steps in README (#270)
    • Support random seed for distributed sampler (#271)
    • Use hyphen for command line args in apps (#273)

    Contributors

    @plyfager @LeoXing1996

    Source code(tar.gz)
    Source code(zip)
  • v0.6.0(Mar 7, 2022)

    Highlights

    • Support StyleGANv3 (#247, #253, #258)
    • Support StyleCLIP (#236)

    New Features

    • Support training on CPU (#238)
    • Speed up training (#231)

    Fix bugs and Improvements

    • Fix bug in non-distributed training/testing (#239)
    • Fix typos and invalid links (#221, #226, #228, #244, #249)
    • Add part of Chinese documentation (#250, #257)

    Contributors

    @plyfager @LeoXing1996 @gvalvano @JimHeo @plutoyuxie

    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Jan 12, 2022)

    Highlights

    • Support BigGAN style's Spectral Norm and update BigGAN with best FID and IS (#159)
    • Support import projected latent and export video in interpolation (#167)
    • Support Improved-DDPM model (#205)

    New Features

    • Support evaluation in distributed mode (#151)
    • Support presistent_work in validation dataloader (#179)
    • Support dockerfile (#200)
    • Support mim (#176)

    Fix bugs and Improvements

    • Fix bug in SinGAN dataset (#192)
    • Fix SAGAN, SNGAN and BigGAN's default sn_style (#199, #213, #215, #217)

    Contributors

    @plyfager @LeoXing1996 @nbei @TommyZihao @JiangongWang

    Source code(tar.gz)
    Source code(zip)
  • v0.4.0(Nov 3, 2021)

    Highlights

    • Add more experiments for conditional GANs: SNGAN, SAGAN, and BigGAN
    • Refact Translation Model (#88, #126, #127, #145)

    New Features

    • Use PyTorch Sphinx theme #123
    • Support torchserve for unconditional models #131

    Fix bugs and Improvements

    • Add CI for python3.9 #110
    • Add support for PyTorch1.9 #115
    • Add pre-commit hook for spell checking #135

    Contributors

    @plyfager , @LeoXing1996 , @ckkelvinchan , @nbei

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Aug 2, 2021)

    Highlights

    • Support conditional GANs: Projection GAN, SNGAN, SAGAN, and BigGAN

    New Features

    • Add support for persistent_workers in PyTorch >= 1.7.0 #71
    • Support warm-up for EMA #55

    Fix bugs and Improvements

    • Fix failing to build docs #64
    • Revise the logic of num_classes in basic conditional gan #69
    • Support dynamic eval internal in eval hook #73
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(May 30, 2021)

    Highlights

    • Support new methods: LSGAN, GGAN.
    • Support mixed-precision training (FP16): official PyTorch Implementation and APEX (#11, #20)

    New Features

    • Add the experiment of MNIST in DCGAN (#24)
    • Add support for uploading checkpoints to Ceph system (cloud server) (#27)
    • Add the functionality of saving the best checkpoint in GenerativeEvalHook (#21)

    Fix bugs and Improvements

    • Fix loss of sample-cfg argument (#13)
    • Add pbar to offline eval and fix bug in grayscale image evaluation/saving (#23)
    • Fix error when data_root option in val_cfg or test_cfg are set as None (#28)
    • Change latex in quick_run.md to svg url and fix number of checkpoints in modelzoo_statistics.md (#34)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Apr 23, 2021)

    Highlights

    • MMGeneration v0.1.0 is released.

    Main Features

    • High-quality Training Performance: We currently support training on Unconditional GANs(DCGAN, WGAN-GP,PGGAN, StyleGANV1, StyleGANV2, Positional Encoding in GANs), Internal GANs(SinGAN), and Image Translation Models(Pix2Pix, CycleGAN). Support for conditional models will come soon.
    • Powerful Application Toolkit: A plentiful toolkit containing multiple applications in GANs is provided to users. GAN interpolation, GAN projection, and GAN manipulations are integrated into our framework. It's time to play with your GANs!
    • Efficient Distributed Training for Generative Models: For the highly dynamic training in generative models, we adopt a new way to train dynamic models with MMDDP.
    • New Modular Design for Flexible Combination: A new design for complex loss modules is proposed for customizing the links between modules, which can achieve flexible combinations among different modules.
    Source code(tar.gz)
    Source code(zip)
Owner
OpenMMLab
OpenMMLab
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022