Solver for Large-Scale Rank-One Semidefinite Relaxations

Overview

STRIDE: spectrahedral proximal gradient descent along vertices

A Solver for Large-Scale Rank-One Semidefinite Relaxations

About

STRIDE is designed for solving high-order semidefinite programming (SDP) relaxations of nonconvex polynomial optimization problems (POPs) that admit rank-one optimal solutions. STRIDE is the first algorithmic framework that blends fast local search on the nonconvex POP with global descent on the convex SDP. Specifically, STRIDE follows a globally convergent trajectory driven by a proximal gradient method (PGM) for solving the SDP, while simultaneously probing long, but safeguarded, rank-one "strides", generated by fast nonlinear programming algorithms on the POP, to seek rapid descent.

If you find STRIDE helpful or use it in your projects, please cite:

@article{Yang21arxiv-stride,
  title={STRIDE along Spectrahedral Vertices for Solving Large-Scale Rank-One Semidefinite Relaxations},
  author={Yang, Heng and Liang, Ling and Toh, Kim-Chuan and Carlone, Luca},
  journal={arXiv preprint arXiv:2105.14033},
  year={2021}
}

Dependencies

In order to run the example code example_quasar.m, please download the following two packages and provide paths to them in example_quasar.m:

  • SDPNAL+: STRIDE uses the ADMM+ subroutine in SDPNAL+ to warmstart.
  • Manopt: in example_quasar.m, STRIDE uses Manopt to perform local search to generate rank-one strides.

Example

We provide a starting example about how to use STRIDE to solve the QUASAR semidefinite relaxation in the script example_quasar.m, you can simply run the script in Matlab.

We also provide an example about using MOSEK to solve the same QUASAR problems, you can run the script example_quasar_mosek.m in Matlab (for which please download MOSEK).

Surprise: you should see STRIDE being 50 times faster on data/quasar_100_1.mat (100 measurements, 20 seconds vs. 1000 seconds) and 30 times faster on data/quasar_50_1.mat (50 measurements, 2 seconds vs. 60 seconds). Note that MOSEK cannot solve larger problems than data/quasar_100_1.mat, but STRIDE has successfully solved problems with up to 1000 measurements (in which case the SDP has millions of constraints, see our paper). However, the goal of STRIDE is not to replace MOSEK -for generic SDP problems that have small to medium size, MOSEK is still the go-to solver- but to provide a solution for large-scale SDPs arising from rank-one semidefinite relaxations that are far beyond the reach of MOSEK.

For more examples of using STRIDE for machine perception applications, please navigate to the repo CertifiablyRobustPerception.

How to use STRIDE

The function signature for STRIDE is

[out,Xopt,yopt,Sopt] = PGDSDP(blk,At,b,C,X0,options)

where PGDSDP stands for projected gradient descent in solving a generic SDP problem (which is the backbone of STRIDE). We now describe the detailed input and out of STRIDE.

Input

  • blk,At,b,C: standard SDP data in SDPT3 format. A standard SDP problem can be fully described by blk,At,b,C, where blk describes the sizes of the positive semidefinite constraints (i.e., blocks, we do not support other conic constraints such as second-order cone and nonnegative orthant), At,b describes the linear constraints, and C describes the linear cost function. blk,At,C should be Matlab cell arrays, while b should be a Matlab array. Please refer to the SDPT3 user guide for details. We provide two example problem data for the QUASAR SDP in the subfolder data. If you are interested in how to generate standard SDP problem data from semidefinite relaxations of polynomial optimization problems, please navigate to the repo CertifiablyRobustPerception.

  • X0: a primal initial guess for the SDP problem. Set X0 = [] if no initial guess is available. A good way of providing an initial primal guess is to use fmincon in Matlab to solve the original polynomial optimization problem (if the POP admits a manifold structure, Manopt should be preferred), obtain a local optimizer, and lift the local optimizer to a rank-one feasible point of the SDP. Please read our paper for more details.

  • options: a Matlab structure that provides more information. There are many available parameters in options, but there are two parameters that are required:

    • options.rrFunName: a string that provides the name of the Matlab function that implements a local search scheme. For example, in the provided example example_quasar.m, we use options.rrFunName = 'local_search_quasar' to tell STRIDE that the function local_search_quasar.m implements the local search scheme.

    • options.SDPNALpath: a string that provides the path to the software package SDPNAL+. STRIDE uses the admmplus subroutine in SDPNAL+ to warmstart. The other optional parameters are described in more details below.

Output

  • Xopt,yopt,Sopt: an (approximate) optimal solution to the SDP. In many cases, STRIDE can solve the SDP to very high accuracy (even better than MOSEK). The printout of STRIDE will show the KKT residuals at Xopt,yopt,Sopt.
  • out: a Matlab structure that contains other information such as run history and runtime.

Available parameters

We now list all the available but optional parameters in options:

  • options.S0: a dual initial guess. Typically it is difficult to have a good guess on the dual variables. If not provided, STRIDE uses ADMM+ to generate dual initial guess. However, in some cases, one can exploit problem structure to provide clever dual initializations, please checkout our paper for details.

  • options.tolADMM: accuracy tolerance for using ADMM+. We note that this is perhaps the most important parameter to tune for a fast performance. Setting options.tolADMM very low (e.g., 1e-12) will ask ADMM+ to provide a very accurate warmstart (in the price of more ADMM+ iterations and runtime) so that the main STRIDE algorithm will converge very fast. Setting options.tolADMM very high (e.g., 1e-4) will not require an accurate warmstart from ADMM+ (so very few ADMM+ iterations and less runtime), but it may take many STRIDE main PGD iterations. We recommend tuning this parameter for each specific problem. For the QUASAR examples in this repo, options.tolADMM = 1e-4 works very well.

  • options.maxiterADMM: maximum ADMM+ iterations, default 1e4.

  • options.tolPGD: accuracy tolerance for STRIDE, in terms of maximum relative KKT residual, default 1e-6.

  • options.pgdStepSize: step size for projected gradient descent. We recommend setting options.pgdStepSize = 10.

  • options.maxiterPGD: maximum outer iterations of STRIDE (in performing projected gradient descent), default 10.

  • options.lbfgsmemory: memory of L-BFGS, default 10.

  • options.maxiterLBFGS: maximum iterations of L-BFGS, default 1000.

  • options.lbfgseps: boolean value to decide if using inexactness in L-BFGS (what we call modified L-BFGS), default options.lbfgseps = true. In practice we found this does not have significant effect on the convergence speed.

  • options.rrOpt: a array that contains the indices of the eigenvectors to be rounded in local search, default options.rrOpt = 1:3 and STRIDE generates rounded hypotheses from the leading 3 eigenvectors.

  • options.rrPar: a Matlab structure that contains all user-defined information needed to perform local search. For a template about how to implement a local search scheme, please see below.

Implement your local search scheme

The function signature for a local search scheme is

[Xhat,fhat,info] = local_search_func(Xbar,C,rrPar,rrOpt,roundonly)

where local_search_func is the string that needs to be passed to STRIDE's function call by using options.rrFunName = 'local_search_func', so that STRIDE can evaluate the local_search_func.m function to generate rank-one hypotheses.

We now explain the input and output of local_search_func.

Input

  • Xbar: a primal SDP iterate, generated by STRIDE's projected gradient descent backbone. Xbar has the same format as X0 and Xopt and is a cell array of positive semidefinite matrices (block structure defined by blk).

  • C: linear cost function, same as the C in standard SDP data.

  • rrPar: a Matlab structure that contains any data that are necessary for performing local search using Xbar. For example, rrPar can contain suitable data from the original POP. This rrPar is provide by using options.rrPar when calling STRIDE.

  • rrOpt: a array that contains the indices of the eigenvectors to be rounded in local search. This rrOpt is provided by using options.rrOpt when calling STRIDE.

  • roundonly: a boolean value that decides if STRIDE should just perform rounding (without local search). If roundonly = true, then the user should specify a routine that generates a rounded feasible POP point from Xbar. If roundonly = false, then the user should specify a routine that not only generates a rounded POP iterate, but also perform local search starting from the rounded POP iterate, using suitable nonlinear programming techniques.

Output

  • Xhat: a rank-one SDP iterate, generated by rounding, local search and lifting from Xbar.

  • fhat: value of the SDP objective function attained by Xhat, by using the cost matrix C.

  • info (optional output): a structure that contains the following information:

    • info.nlpsuccess: a boolean value that indicates whether the local search has been successful (for example, if the nonlinear programming solver has failed, then info.nlpsuccess = false).
    • info.minidx: the index of the eigenvector, from which the local search solution is best. For example, if rrOpt = 1:3, and the local solution obtained from rounding the second eigenvector attained the lowest cost, then info.minidx = 2.
    • info.pobjs: the objective values of all local search solutions.
    • info.diffpobj: which is simply info.diffpobj = info.pobjs(1) - fhat.

Although the local_search_func may sound complicated to implement, it is quite natural, because it is simply how one would implement a local optimization method for the POP. Please see utils/local_search_quasar.m for how we implemented a local search scheme for the QUASAR SDP relaxation. Note that one of the major contributions of STRIDE is to use the original POP to attain fast convergence, so please spend time on implementing this local search function for your problem.

Acknowledgements

STRIDE is implemented by Heng Yang (MIT) and Ling Liang (NUS). We would like to thank the feedback and resources from Prof. Kim-Chuan Toh (NUS), and Prof. Luca Carlone (MIT).

Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)

PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based

Soohwan Kim 565 Jan 04, 2023
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023