ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Overview

ManimML

GitHub license GitHub tag Pypi Downloads Follow Twitter

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library. We want this project to be a compilation of primitive visualizations that can be easily combined to create videos about complex machine learning concepts. Additionally, we want to provide a set of abstractions which allow users to focus on explanations instead of software engineering.

Table of Contents

  1. Getting Started
  2. Examples

Getting Started

First you will want to install manim.

Then install the package form source or pip install manim_ml

Then you can run the following to generate the example videos from python scripts.

manim -pqh src/vae.py VAEScene

Examples

Checkout the examples directory for some example videos with source code.

Neural Networks

This is a visualization of a Variational Autoencoder made using ManimML. It has a Pytorch style list of layers that can be composed in arbitrary order. The following video is made with the code from below.

class VariationalAutoencoderScene(Scene):

    def construct(self):
        embedding_layer = EmbeddingLayer(dist_theme="ellipse").scale(2)
        
        image = Image.open('images/image.jpeg')
        numpy_image = np.asarray(image)
        # Make nn
        neural_network = NeuralNetwork([
            ImageLayer(numpy_image, height=1.4),
            FeedForwardLayer(5),
            FeedForwardLayer(3),
            embedding_layer,
            FeedForwardLayer(3),
            FeedForwardLayer(5),
            ImageLayer(numpy_image, height=1.4),
        ], layer_spacing=0.1)

        neural_network.scale(1.3)

        self.play(Create(neural_network))
        self.play(neural_network.make_forward_pass_animation(run_time=15))

Generative Adversarial Network

This is a visualization of a Generative Adversarial Network made using ManimML.

VAE Disentanglement

This is a visualization of disentanglement with a Variational Autoencoder

You might also like...
Create animations for the optimization trajectory of neural nets
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Testing the Facial Emotion Recognition (FER) algorithm on animations
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

A collection of 100 Deep Learning images and visualizations
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

Comments
  • PyPi out of date

    PyPi out of date

    When I pip install manim_ml it doesn't include any of the examples in the README. It also doesn't have many of the modules you'd expect. For example, manim_ml.neural_networks doesn't exist. As a workaround I've manually installed dependencies and added a clone of the latest commit to my python path. However, it would be nice to be able to install it via pip.

    opened by ElPiloto 6
  • [BUG] update some of the examples

    [BUG] update some of the examples

    I updated most of the examples, in particular: disentanglement cnn vae.

    interpolation still doesn't work, and gan has some positioning issues but at least it renders.

    Thanks for the cool library btw! l think having working/updated examples would increase it's visibility and usefulness :)

    opened by YannDubs 1
  • NN scaling issue with Convolutional3DLayer

    NN scaling issue with Convolutional3DLayer

    At some point there was code commited changing the behaviour of the net when scaling it. If I use the code in the pip package everything works fine (0.0.11 seems to contain only code prior to the 7th of may). https://user-images.githubusercontent.com/54776552/198372984-f704cceb-8582-4bf9-bc23-c15ebb836b34.mp4

    However I'm forking the repo (with the latest commit from august) because I need to change some internal code and noticed this problem.

    https://user-images.githubusercontent.com/54776552/198373792-fd672ec7-708e-4ebe-b353-e291c8a591dd.mp4

    Maybe someone can pinpoint the exact commit which causes this behaviour?

    Code used:

    class Test(Scene):
    	def construct(self):
    		# Make the Layer object
    		l1 = Convolutional3DLayer(4, 2, 2)
    		l2 = Convolutional3DLayer(5, 1, 1)
    		l3 = Convolutional3DLayer(2, 3, 3)
    		layers = [l1, l2, l3]
    		nn = NeuralNetwork(layers)
    		nn.scale(2)
    		nn.move_to(ORIGIN)
    		# Make Animation
    		self.add(nn)
    		#self.play(Create(nn))
    		forward_propagation_animation = nn.make_forward_pass_animation(run_time=5, passing_flash=True)
    
    		self.play(forward_propagation_animation)
    
    opened by wand555 1
Releases(v0.0.1)
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022