Post-training Quantization for Neural Networks with Provable Guarantees

Overview

Post-training Quantization for Neural Networks with Provable Guarantees

Authors: Jinjie Zhang ([email protected]), Yixuan Zhou ([email protected]) and Rayan Saab ([email protected])

Overview

This directory contains code necessary to run a post-training neural-network quantization method GPFQ, that is based on a greedy path-following mechanism. One can also use it to reproduce the experiment results in our paper "Post-training Quantization for Neural Networks with Provable Guarantees". In this paper, we also prove theoretical guarantees for the proposed method, that is, for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights – i.e., level of over-parametrization.

If you make use of this code or our quantization method in your work, please cite the following paper:

 @article{zhang2022posttraining,
     author = {Zhang, Jinjie and Zhou, Yixuan and Saab, Rayan},
     title = {Post-training Quantization for Neural Networks with Provable Guarantees},
     booktitle = {arXiv preprint arXiv:2201.11113},
     year = {2022}
   }

Note: The code is designed to work primarily with the ImageNet dataset. Due to the size of this dataset, it is likely one may need heavier computational resources than a local machine. Nevertheless, the experiments can be run, for example, using a cloud computation center, e.g. AWS. When we run this experiment, we use the m5.8xlarge EC2 instance with a disk space of 300GB.

Installing Dependencies

We assume a python version that is greater than 3.8.0 is installed in the user's machine. In the root directory of this repo, we provide a requirements.txt file for installing the python libraries that will be used in our code.

To install the necessary dependency, one can first start a virtual environment by doing the following:

python3 -m venv .venv
source .venv/bin/activate

The code above should activate a new python virtual environments.

Then one can make use of the requirements.txt by

pip3 install -r requirement.txt

This should install all the required dependencies of this project.

Obtaining ImageNet Dataset

In this project, we make use of the Imagenet dataset, in particular, we use the ILSVRC-2012 version.

To obtain the Imagenet dataset, one can submit a request through this link.

Once the dataset is obtained, place the .tar files for training set and validation set both under the data/ILSVRC2012 directory of this repo.

Then use the following procedure to unzip Imagenet dataset:

tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..
# Extract the validation data and move images to subfolders:
tar -xvf ILSVRC2012_img_val.tar

Running Experiments

The implementation of the modified GPFQ in our paper is contained in quantization_scripts. Additionally, adhoc_quantization_scripts and retraining_scripts provide extra experiments and both of them are variants of the framework in quantization_scripts. adhoc_quantization_scripts contains heuristic modifications used to further improve the performance of GPFQ, such as bias correction, mixed precision, and unquantizing the last layer. retraining_scripts shows a quantization-aware training strategy that is designed to retrain the neural network after each layer is quantized.

In this section, we will give a guidance on running our code contained in quantization_scripts and the implementation of other two counterparts adhoc_quantization_scripts and retraining_scripts are very similar to quantization_scripts.

  1. Before getting started, run in the root directory of the repo and run mkdir modelsto create a directory in which we will store the quantized model.

  2. The entry point of the project starts with quantization_scripts/quantize.py. Once the file is opened, there is a section to set hyperparameters, for example, the model_name parameter, the number of bits/batch size used for quantization, the scalar of alphabets, the probability for subsampling in CNNs etc. Note that the model_name mentioned above should be the same as the model that you will quantize. After you selected a model_name and assuming you are still in the root directory of this repo, run mkdir models/{model_name}, where the {model_name} should be the python string that you provided for the model_name parameter in the quantize.py file. If the directory already exists, you can skip this step.

  3. Then navigate to the logs directory and run python3 init_logs.py. This will prepare a log file which is used to store the results of the experiment.

  4. Finally, open the quantization_scripts directory and run python3 quantize.py to start the experiment.

Owner
Yixuan Zhou
3rd Year UCSD CS double Math undergrad.
Yixuan Zhou
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023