Post-training Quantization for Neural Networks with Provable Guarantees

Overview

Post-training Quantization for Neural Networks with Provable Guarantees

Authors: Jinjie Zhang ([email protected]), Yixuan Zhou ([email protected]) and Rayan Saab ([email protected])

Overview

This directory contains code necessary to run a post-training neural-network quantization method GPFQ, that is based on a greedy path-following mechanism. One can also use it to reproduce the experiment results in our paper "Post-training Quantization for Neural Networks with Provable Guarantees". In this paper, we also prove theoretical guarantees for the proposed method, that is, for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights – i.e., level of over-parametrization.

If you make use of this code or our quantization method in your work, please cite the following paper:

 @article{zhang2022posttraining,
     author = {Zhang, Jinjie and Zhou, Yixuan and Saab, Rayan},
     title = {Post-training Quantization for Neural Networks with Provable Guarantees},
     booktitle = {arXiv preprint arXiv:2201.11113},
     year = {2022}
   }

Note: The code is designed to work primarily with the ImageNet dataset. Due to the size of this dataset, it is likely one may need heavier computational resources than a local machine. Nevertheless, the experiments can be run, for example, using a cloud computation center, e.g. AWS. When we run this experiment, we use the m5.8xlarge EC2 instance with a disk space of 300GB.

Installing Dependencies

We assume a python version that is greater than 3.8.0 is installed in the user's machine. In the root directory of this repo, we provide a requirements.txt file for installing the python libraries that will be used in our code.

To install the necessary dependency, one can first start a virtual environment by doing the following:

python3 -m venv .venv
source .venv/bin/activate

The code above should activate a new python virtual environments.

Then one can make use of the requirements.txt by

pip3 install -r requirement.txt

This should install all the required dependencies of this project.

Obtaining ImageNet Dataset

In this project, we make use of the Imagenet dataset, in particular, we use the ILSVRC-2012 version.

To obtain the Imagenet dataset, one can submit a request through this link.

Once the dataset is obtained, place the .tar files for training set and validation set both under the data/ILSVRC2012 directory of this repo.

Then use the following procedure to unzip Imagenet dataset:

tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..
# Extract the validation data and move images to subfolders:
tar -xvf ILSVRC2012_img_val.tar

Running Experiments

The implementation of the modified GPFQ in our paper is contained in quantization_scripts. Additionally, adhoc_quantization_scripts and retraining_scripts provide extra experiments and both of them are variants of the framework in quantization_scripts. adhoc_quantization_scripts contains heuristic modifications used to further improve the performance of GPFQ, such as bias correction, mixed precision, and unquantizing the last layer. retraining_scripts shows a quantization-aware training strategy that is designed to retrain the neural network after each layer is quantized.

In this section, we will give a guidance on running our code contained in quantization_scripts and the implementation of other two counterparts adhoc_quantization_scripts and retraining_scripts are very similar to quantization_scripts.

  1. Before getting started, run in the root directory of the repo and run mkdir modelsto create a directory in which we will store the quantized model.

  2. The entry point of the project starts with quantization_scripts/quantize.py. Once the file is opened, there is a section to set hyperparameters, for example, the model_name parameter, the number of bits/batch size used for quantization, the scalar of alphabets, the probability for subsampling in CNNs etc. Note that the model_name mentioned above should be the same as the model that you will quantize. After you selected a model_name and assuming you are still in the root directory of this repo, run mkdir models/{model_name}, where the {model_name} should be the python string that you provided for the model_name parameter in the quantize.py file. If the directory already exists, you can skip this step.

  3. Then navigate to the logs directory and run python3 init_logs.py. This will prepare a log file which is used to store the results of the experiment.

  4. Finally, open the quantization_scripts directory and run python3 quantize.py to start the experiment.

Owner
Yixuan Zhou
3rd Year UCSD CS double Math undergrad.
Yixuan Zhou
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022