PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

Overview

PySOT

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorithms, including SiamRPN and SiamMask. It is written in Python and powered by the PyTorch deep learning framework. This project also contains a Python port of toolkit for evaluating trackers.

PySOT has enabled research projects, including: SiamRPNDaSiamRPNSiamRPN++, and SiamMask.

Example SiamFC, SiamRPN and SiamMask outputs.

Introduction

The goal of PySOT is to provide a high-quality, high-performance codebase for visual tracking research. It is designed to be flexible in order to support rapid implementation and evaluation of novel research. PySOT includes implementations of the following visual tracking algorithms:

using the following backbone network architectures:

Additional backbone architectures may be easily implemented. For more details about these models, please see References below.

Evaluation toolkit can support the following datasets:

๐Ÿ“Ž OTB2015 ๐Ÿ“Ž VOT16/18/19 ๐Ÿ“Ž VOT18-LT ๐Ÿ“Ž LaSOT ๐Ÿ“Ž UAV123

Model Zoo and Baselines

We provide a large set of baseline results and trained models available for download in the PySOT Model Zoo.

Installation

Please find installation instructions for PyTorch and PySOT in INSTALL.md.

Quick Start: Using PySOT

Add PySOT to your PYTHONPATH

export PYTHONPATH=/path/to/pysot:$PYTHONPATH

Download models

Download models in PySOT Model Zoo and put the model.pth in the correct directory in experiments

Webcam demo

python tools/demo.py \
    --config experiments/siamrpn_r50_l234_dwxcorr/config.yaml \
    --snapshot experiments/siamrpn_r50_l234_dwxcorr/model.pth
    # --video demo/bag.avi # (in case you don't have webcam)

Download testing datasets

Download datasets and put them into testing_dataset directory. Jsons of commonly used datasets can be downloaded from Google Drive or BaiduYun. If you want to test tracker on new dataset, please refer to pysot-toolkit to setting testing_dataset.

Test tracker

cd experiments/siamrpn_r50_l234_dwxcorr
python -u ../../tools/test.py 	\
	--snapshot model.pth 	\ # model path
	--dataset VOT2018 	\ # dataset name
	--config config.yaml	  # config file

The testing results will in the current directory(results/dataset/model_name/)

Eval tracker

assume still in experiments/siamrpn_r50_l234_dwxcorr_8gpu

python ../../tools/eval.py 	 \
	--tracker_path ./results \ # result path
	--dataset VOT2018        \ # dataset name
	--num 1 		 \ # number thread to eval
	--tracker_prefix 'model'   # tracker_name

Training ๐Ÿ”ง

See TRAIN.md for detailed instruction.

Getting Help ๐Ÿ”จ

If you meet problem, try searching our GitHub issues first. We intend the issues page to be a forum in which the community collectively troubleshoots problems. But please do not post duplicate issues. If you have similar issue that has been closed, you can reopen it.

  • ModuleNotFoundError: No module named 'pysot'

๐ŸŽฏ Solution: Run export PYTHONPATH=path/to/pysot first before you run the code.

  • ImportError: cannot import name region

๐ŸŽฏ Solution: Build region by python setup.py build_ext โ€”-inplace as decribled in INSTALL.md.

References

Contributors

License

PySOT is released under the Apache 2.0 license.

Owner
STVIR
SenseTime Video Intelligence Research Team
STVIR
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepaล„ski 1 Apr 29, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
๐Ÿ… The Most Comprehensive List of Kaggle Solutions and Ideas ๐Ÿ…

๐Ÿ… Collection of Kaggle Solutions and Ideas ๐Ÿ…

Farid Rashidi 2.3k Jan 08, 2023
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Moverโ€™s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Moverโ€™s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022