Gray Zone Assessment

Overview

Gray Zone Assessment

Get started

  1. Clone github repository
git clone https://github.com/andreanne-lemay/gray_zone_assessment.git
  1. Build docker image
docker build -t gray_zone docker/
  1. Run docker container
docker run -it -v tunnel/to/local/folder:/tunnel --gpus 0 gray_zone:latest bash
  1. Run the following command at the root of the repository to install the modules
cd path/to/gray_zone_assessment
pip install -e .
  1. Train model
python run_model.py -o <outpath/path> -p <resources/training_configs/config.json> -d <image/data/path> -c <path/csv/file.csv>

For more information on the different flags: python run_model.py --help

Configuration file (flag -p or --param-path)

The configuration file is a json file containing the main training parameters.
Some json file examples are located in gray_zone/resources/training_configs/

Required configuration parameters

Parameter Description
architecture Architecture id contained in Densenet or Resnet family. Choice between: 'densenet121', 'densenet169', 'densenet201', 'densenet264', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
model_type Choice between "classification", "ordinal", "regression".
loss Loss function id. Choice between 'ce' (Cross entropy), 'mse' (Mean square error), 'l1' (L1), 'bce' (Binary cross entropy), 'coral' (Ordinal loss), 'qwk' (Quadratic weighted kappa).
batch_size Batch size (int).
lr Learning rate (float).
n_epochs Number of training epochs (int).
device Device id (e.g., 'cuda:0', 'cpu') (str).
val_metric Choice between "auc" (average ROC AUC over all classes), "val_loss" (minimum validation loss), "kappa" (linear Cohen's kappa), default "accuracy".
dropout_rate Dropout rate (Necessary for Monte Carlo model's). A dropout rate of 0 will disable dropout. (float).
is_weighted_loss Indicates if the loss is weighted by the number of cases by class (bool).
is_weighted_sampling Indicates if the sampling is weighted by the number of cases by class (bool).
seed Random seed (int).
train_frac Fraction of cases used for training if splitting not already done in csv file, or else the parameter is ignored (float).
test_frac Fraction of cases used for testing if splitting not already done in csv file, or else the parameter is ignored (float).
train_transforms / val_transforms monai training / validation transforms with parameters. Validation transforms are also used during testing (see https://docs.monai.io/en/latest/transforms.html for transform list)

csv file (flag -c or --csv-path)

The provided csv file contains the filename of the images used for training, GT labels (int from 0-n_class), patient ID (str) and split column (containing 'train', 'val' or 'test') (optional).

Example of csv file with the default column names. If the column names are different from the default values, the flags --label-colname, --image-colname, --patient-colname, and --split-colname can be used to indicate the custom column names. There can be more columns in the csv file. All this metadata will be included in predictions.csv and split_df.csv.

image label patient dataset
patient1_000.png 0 patient1 train
patient1_001.png 0 patient1 train
patient2_000.png 2 patient2 val
patient2_001.png 2 patient2 val
patient2_002.png 2 patient2 val
patient3_000.png 1 patient3 test
patient3_001.png 1 patient3 test

Output directory (flag -o or --output-path)


└── output directory                # Output directory specified with `-o`  
    ├──   checkpoints               # All models (one .pth per epoch)  
    |     ├──  checkpoint0.pth   
    |     ├──  ...  
    |     └──  checkpointn.pth   
    ├──   best_metric_model.pth     # Best model based on validation metric  
    ├──   params.json               # Parameters used for training (configuration file)  
    ├──   predictions.csv           # Test results  
    ├──   split_df.csv              # csv file containing image filenames, labels, split and patient id  
    └──   train_record.json         # Record of CLI used to train and other info for reproducibility  
Pose Detection and Machine Learning for real-time body posture analysis during exercise to provide audiovisual feedback on improvement of form.

Posture: Pose Tracking and Machine Learning for prescribing corrective suggestions to improve posture and form while exercising. This repository conta

Pratham Mehta 10 Nov 11, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022