Simple, efficient and flexible vision toolbox for mxnet framework.

Overview

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox is a toolbox aiming to provide a general and simple interface for vision tasks. This project is greatly inspired by PyTorch and torchvision. Detailed copyright files are on the way. Improvements and suggestions are welcome.

Installation

MXBox is now available on PyPi.

pip install mxbox

Features

  1. Define preprocess as a flow
transform = transforms.Compose([
    transforms.RandomSizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.mx.ToNdArray(),
    transforms.mx.Normalize(mean = [ 0.485, 0.456, 0.406 ],
                            std  = [ 0.229, 0.224, 0.225 ]),
])

PS: By default, mxbox uses PIL to read and transform images. But it also supports other backends like accimage and skimage.

More usages can be found in documents and examples.

  1. Build an multi-thread DataLoader in few lines

Common datasets such as cifar10, cifar100, SVHN, MNIST are out-of-the-box. You can simply load them from mxbox.datasets.

from mxbox import transforms, datasets, DataLoader
trans = transforms.Compose([
        transforms.mx.ToNdArray(), 
        transforms.mx.Normalize(mean = [ 0.485, 0.456, 0.406 ],
                                std  = [ 0.229, 0.224, 0.225 ]),
])
dataset = datasets.CIFAR10('~/.mxbox/cifar10', transform=trans, download=True)

batch_size = 32
feedin_shapes = {
    'batch_size': batch_size,
    'data': [mx.io.DataDesc(name='data', shape=(batch_size, 3, 32, 32), layout='NCHW')],
    'label': [mx.io.DataDesc(name='softmax_label', shape=(batch_size, ), layout='N')]
}
loader = DataLoader(dataset, feedin_shapes, threads=8, shuffle=True)

Or you can also easily create your own, which only requires to implement __getitem__ and __len__.

class TooYoungScape(mxbox.Dataset):
    def __init__(self, root, lst, transform=None):
        self.root = root
        with open(osp.join(root, lst), 'r') as fp:
            self.lst = [line.strip().split('\t') for line in fp.readlines()]
        self.transform = transform

    def __getitem__(self, index):
        img = self.pil_loader(osp.join(self.root, self.lst[index][0]))
        if self.transform is not None:
            img = self.transform(img)
        return {'data': img, 'softmax_label': img}

    def __len__(self):
        return len(self.lst)
        
dataset = TooYoungScape('~/.mxbox/TooYoungScape', "train.lst", transform=trans)
loader = DataLoader(dataset, feedin_shapes, threads=8, shuffle=True)
  1. Load popular model with pretrained weights

Note: current under construction, many models lack of pretrained weights and some of their definition files are missing.

vgg = mxbox.models.vgg(num_classes=10, pretrained=True)
resnet = mxbox.models.resnet152(num_classes=10, pretrained=True)

TODO list

  1. FLAG options?

  2. Efficient prefetch.

  3. Common Models preparation.

  4. More friendly error logging.

Owner
Ligeng Zhu
Ph.D. student in [email protected], alumni at SFU and ZJU.
Ligeng Zhu
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023