Manifold-Mixup implementation for fastai V2

Overview

Manifold Mixup

Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of manifold mixup, fastai's input mixup implementation plus some improvements/variants that I developped with lessw2020.

This package provides four additional callbacks to the fastai learner :

  • ManifoldMixup which implements ManifoldMixup
  • OutputMixup which implements a variant that does the mixup only on the output of the last layer (this was shown to be more performant on a benchmark and an independant blogpost)
  • DynamicManifoldMixup which lets you use manifold mixup with a schedule to increase difficulty progressively
  • DynamicOutputMixup which lets you use manifold mixup with a schedule to increase difficulty progressively

Usage

For a minimal demonstration of the various callbacks and their parameters, see the Demo notebook.

Mixup

To use manifold mixup, you need to import manifold_mixup and pass the corresponding callback to the cbs argument of your learner :

learner = Learner(data, model, cbs=ManifoldMixup())
learner.fit(8)

The ManifoldMixup callback takes three parameters :

  • alpha=0.4 parameter of the beta law used to sample the interpolation weight
  • use_input_mixup=True do you want to apply mixup to the inputs
  • module_list=None can be used to pass an explicit list of target modules

The OutputMixup variant takes only the alpha parameters.

Dynamic mixup

Dynamic callbackss, which are available via dynamic_mixup, take three parameters instead of the single alpha parameter :

  • alpha_min=0.0 the initial, minimum, value for the parameter of the beta law used to sample the interpolation weight (we recommend keeping it to 0)
  • alpha_max=0.6 the final, maximum, value for the parameter of the beta law used to sample the interpolation weight
  • scheduler=SchedCos the scheduling function to describe the evolution of alpha from alpha_min to alpha_max

The default schedulers are SchedLin, SchedCos, SchedNo, SchedExp and SchedPoly. See the Annealing section of fastai2's documentation for more informations on available schedulers, ways to combine them and provide your own.

Notes

Which modules will be intrumented by ManifoldMixup ?

ManifoldMixup tries to establish a sensible list of modules on which to apply mixup:

  • it uses a user provided module_list if possible
  • otherwise it uses only the modules wrapped with ManifoldMixupModule
  • if none are found, it defaults to modules with Block or Bottleneck in their name (targetting mostly resblocks)
  • finaly, if needed, it defaults to all modules that are not included in the non_mixable_module_types list

The non_mixable_module_types list contains mostly recurrent layers but you can add elements to it in order to define module classes that should not be used for mixup (do not hesitate to create an issue or start a PR to add common modules to the default list).

When can I use OutputMixup ?

OutputMixup applies the mixup directly to the output of the last layer. This only works if the loss function contains something like a softmax (and not when it is directly used as it is for regression).

Thus, OutputMixup cannot be used for regression.

A note on skip-connections / residual-blocks

ManifoldMixup (this does not apply to OutputMixup) is greatly degraded when applied inside a residual block. This is due to the mixed-up values becoming incoherent with the output of the skip connection (which have not been mixed).

While this implementation is equiped to work around the problem for U-Net and ResNet like architectures, you might run into problems (negligeable improvements over the baseline) with other network structures. In which case, the best way to apply manifold mixup would be to manually select the modules to be instrumented.

For more unofficial fastai extensions, see the Fastai Extensions Repository.

Owner
Nestor Demeure
PhD, Engineer specialized in computer science and applied mathematics.
Nestor Demeure
Rohit Ingole 2 Mar 24, 2022
Xi Dongbo 78 Nov 29, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023