Visual dialog agents with pre-trained vision-and-language encoders.

Overview

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation

Or READ-UP: Referring Expression Agent Dialog with Unified Pretraining.

This repo includes the training/testing code for our paper Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation that has been accepted by CVPR 2021.

Please cite the following paper if you use the code in this repository:

@inproceedings{tu2021learning,
  title={Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation},
  author={Tu, Tao and Ping, Qing and Thattai, Govindarajan and Tur, Gokhan and Natarajan, Prem},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5622--5631},
  year={2021}
}

Repository Setup

Environment

The following environment is recommended:

Instance storage: > 800 GB
pytorch 1.4.0
cuda 10.0

Set up virtual environment and install pytorch:

$ conda create -n read_up python=3.6
$ conda activate read_up
$ git clone https://github.com/amazon-research/read-up.git

# [IMPORTANT] pytorch 1.4.0 have no issue for parallel training
$ conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.0 -c pytorch

Install dependencies:

# Install general dependencies
$ sudo apt-get install build-essential libcap-dev
$ pip install -r requirement.txt

# Install vqa-maskrcnn-benchmark (for feature extraction only)
$ git clone https://gitlab.com/vedanuj/vqa-maskrcnn-benchmark.git
$ cd vqa-maskrcnn-benchmark
$ python setup.py build develop

Install Apex for distributed training

# Apex is used for both `faster-rcnn feature extraction` & `distributed training`
$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Dataset

Meta-data

Download the GuessWhat?! dataset:

$ wget https://florian-strub.com/guesswhat.train.jsonl.gz -P data/
$ wget https://florian-strub.com//guesswhat.valid.jsonl.gz -P data/
$ wget https://florian-strub.com//guesswhat.test.jsonl.gz -P data/

Prepare dict.json:

  1. Set up repo as instructed in https://github.com/GuessWhatGame/guesswhat
  2. Generate the dict.json file:
$ python src/guesswhat/preprocess_data/create_dictionary.py -data_dir data -dict_file dict.json -min_occ 3
  1. Copy dict.json file to read-up repo:
$ cd read-up
$ mkdir tf-pretrained-model
$ cp guesswhat/data/dict.json read-up/tf-pretrained-model/

Dataset for Oracle models

1. Dataset for baseline Oracle + Faster-RCNN visual features.

Under vqa-maskrcnn-benchmark/data/, download RCNN model and COCO images:

# download RCNN model
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/detectron_model.pth
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/detectron_config.yaml

# download COCO data  
$ wget http://images.cocodataset.org/zips/train2014.zip
$ wget http://images.cocodataset.org/zips/val2014.zip
$ wget http://images.cocodataset.org/zips/test2014.zip
$ unzip -j train2014.zip 
$ unzip -j valid2014.zip 
$ unzip -j test2014.zip 

Copy the guesswhat.train/valid/test.jsonl to vqa-maskrcnn-benchmark/data/. Unzip the COCO images into a folder image_dir/COCO_2014/images/, and prepare a npy file for feature extraction later.


$ python bin/prepare_extract_gt_features_gw.py \
    --src vqa-maskrcnn-benchmark/data/guesswhat.train.jsonl \
    --img-dir vqa-maskrcnn-benchmark/image_dir/COCO_2014/images/ \
    --out vqa-maskrcnn-benchmark/image_dir/COCO_2014/npy_files/guesswhat.train.npy

Repeat the same process for val and test. The generated file looks like the following:

{
    {
        'file_name': 'name_of_image_file',
        'file_path': '<path_to_image_file_on_your_disk>',
        'bbox': array([
                        [ x1, y1, width1, height1],
                        [ x2, y2, width2, height2],
                        ...
                    ]),
        'num_box': 2
    },
    ....
}

Extract features from the ground-truth bounding boxes generated before:

$ python bin/extract_features_from_gt.py \
    --model_file vqa-maskrcnn-benchmark/data/detectron_model.pth \
    --config_file vqa-maskrcnn-benchmark/data/detectron_config.yaml \
    --imdb_gt_file vqa-maskrcnn-benchmark/image_dir/COCO_2014/npy_files/guesswhat.train.npy \
    --output_folder data/rcnn/from_gt_gw_xyxy_scale/train

Repeat this process for val and test data.

2. Dataset for our Oracle model.

Download the pretrained VilBERT model (both vanilla and 12-in-1 have similar performance in our experiments).

# download vanilla pretrained model
$ cd vilbert-pretrained-model
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/pretrained_model.bin

# download 12-in-1 pretrained model
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/multi_task_model.bin

Download the features for COCO:

$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/datasets/coco/features_100/COCO_trainval_resnext152_faster_rcnn_genome.lmdb/data.mdb && mv data.mdb COCO_trainval_resnext152_faster_rcnn_genome.lmdb/
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/datasets/coco/features_100/COCO_test_resnext152_faster_rcnn_genome.lmdb/data.mdb && mv data.mdb COCO_test_resnext152_faster_rcnn_genome.lmdb/

Dataset for Q-Gen models

1. Dataset for baseline Q-Gen model [1]

$ wget www.florian-strub.com/github/ft_vgg_img.zip
$ unzip ft_vgg_img.zip -d img/

2. Dataset for VDST Q-Gen model [2]

$ python bin/extract_features.py \
    --model_file vqa-maskrcnn-benchmark/data/detectron_model.pth \
    --config_file vqa-maskrcnn-benchmark/data/detectron_config.yaml \
    --image_dir vqa-maskrcnn-benchmark/image_dir/COCO_2014/images/ \
    --output_folder data/rcnn/from_rcnn/ \
    --batch_size 8

Dataset for Guesser models

1. Dataset for baseline Guesser model[1]

$ cd data/vilbert-multi-task
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/datasets.tar.gz
$ tar -I pigz -xvf datasets.tar.gz datasets/guesswhat/

Model Training & Evaluation

Oracle

To train our Oracle model:

$ python -m torch.distributed.launch \
    --nproc_per_node=4 \
    --nnodes=1 \
    --node_rank=0 \
    main.py \
    --command train-oracle-vilbert \
    --config config_files/oracle_vilbert.yaml \
    --n-jobs 8

To evaluate our Oracle model:

$ python main.py \
    --command test-oracle-vilbert \
    --config config_files/oracle_vilbert.yaml \
    --load ckpt/oracle_vilbert-sd0/epoch-3.pth

This repo also implements other Oracle models:

  • Baseline Oracle model [1]
  • Baseline Oracle model + Faster-RCNN visual features (our ablation model)

To train and evaluate this model, run the main.py with corresponding config file and command.

Guesser

To train our Guesser model:

$ python main.py \
    --command train-guesser-vilbert \
    --config config_files/guesser_vilbert.yaml \
    --n-jobs 8

To evaluate our Guesser model:

$ python main.py \
    --command test-guesser-vilbert \
    --config config_files/guesser_vilbert.yaml \
    --n-jobs 8 \
    --load ckpt/guesser_vilbert-sd0/best.pth

This repo also implements other Guesser models:

  • Baseline Guesser model [1]

To train and evaluate this model, run the main.py with corresponding config file and command.

Q-Gen

To train our Q-Gen model:

# Distributed training
$ python -m torch.distributed.launch \
    --nproc_per_node=4 \
    --nnodes=1 \
    --node_rank=0 \
    main.py \
    --command train-qgen-vilbert \
    --config config_files/qgen_vilbert.yaml \
    --n-jobs 8 

# Non-distributed training
$ python main.py \
    --command train-qgen-vilbert \
    --config config_files/qgen_vilbert.yaml \
    --n-jobs 8 

To evalaute our Q-Gen model:

$ python main.py \
    --command test-self-play-all-vilbert \
    --config config_files/self_play_all_vilbert.yaml \
    --n-jobs 8

This repo also implements other Q-Gen models:

  • Baseline Q-Gen model [1]
  • VDST Q-Gen model [2]

To train and evaluate these models, run the main.py with corresponding config file and command.

References

[1] Strub, F., De Vries, H., Mary, J., Piot, B., Courvile, A., & Pietquin, O. (2017, August). End-to-end optimization of goal-driven and visually grounded dialogue systems. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 2765-2771).

[2] Pang, W., & Wang, X. (2020, April). Visual dialogue state tracking for question generation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 07, pp. 11831-11838).

Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022