NP DRAW paper released code

Related tags

Deep LearningNPDRAW
Overview

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation

This repo contains the official implementation for the NP-DRAW paper.

by Xiaohui Zeng, Raquel Urtasun, Richard Zemel, Sanja Fidler, and Renjie Liao

Abstract

In this paper, we present a non-parametric structured latent variable model for image generation, called NP-DRAW, which sequentially draws on a latent canvas in a part-by-part fashion and then decodes the image from the canvas. Our key contributions are as follows.

  1. We propose a non-parametric prior distribution over the appearance of image parts so that the latent variable “what-to-draw” per step becomes a categorical random variable. This improves the expressiveness and greatly eases the learning compared to Gaussians used in the literature.
  2. We model the sequential dependency structure of parts via a Transformer, which is more powerful and easier to train compared to RNNs used in the literature.
  3. We propose an effective heuristic parsing algorithm to pre-train the prior. Experiments on MNIST, Omniglot, CIFAR-10, and CelebA show that our method significantly outperforms previous structured image models like DRAW and AIR and is competitive to other generic generative models.

Moreover, we show that our model’s inherent compositionality and interpretability bring significant benefits in the low-data learning regime and latent space editing.

Generation Process

prior

Our prior generate "whether", "where" and "what" to draw per step. If the "whether-to-draw" is true, a patch from the part bank is selected and pasted to the canvas. The final canvas is refined by our decoder.

More visualization of the canvas and images

twitter-1page

Latent Space Editting

We demonstrate the advantage of our interpretable latent space via interactively editing/composing the latent canvas.

edit

  • Given images A and B, we encode them to obtain the latent canvases. Then we compose a new canvas by placing certain semantically meaningful parts (e.g., eyeglasses, hair, beard, face) from canvas B on top of canvas A. Finally, we decode an image using the composed canvas.

Dependencies

# the following command will install torch 1.6.0 and other required packages 
conda env create -f environment.yml # edit the last link in the yml file for the directory
conda activate npdraw 

Pretrained Model

Pretrained model will be available here To use the pretrained models, download the zip file under exp folder and unzip it. For expample, with the cifar.zip file we will get ./exp/cifarcm/cat_vloc_at/ and ./exp/cnn_prior/cifar/.

Testing the pretrained NPDRAW model:

  • before running the evaluation, please also download the stats on the test set from google-drive, and run
mkdir datasets 
mv images.tar.gz datasets 
cd datasets 
tar xzf images.tar.gz 

The following commands test the FID score of the NPDRAW model.

# for mnist
bash scripts/local_sample.sh exp/stoch_mnist/cat_vloc_at/0208/p5s5n36vitBinkl1r1E3_K50w5sc0_gs_difflr_b500/E00550.pth # FID 2.55

# for omniglot
bash scripts/local_sample.sh exp/omni/cat_vloc_at/0208/p5s5n36vitBinkl1r1E3_K50w5sc0_gs_difflr_b500/ckpt_epo799.pth # FID 5.53

# for cifar
bash scripts/local_sample.sh exp/cifarcm/cat_vloc_at/0208/p4s4n64_vitcnnLkl11E3_K200w4sc0_gs_difflr_b150/ckpt_epo499.pth #

# for celeba
bash scripts/local_sample.sh exp/celebac32/cat_vloc_at/0208/p4s4n64_vitcnnLkl0e531E3_K200w4sc0_gs_difflr_b150/ckpt_epo199.pth # FID 41.29

Training

Use ./scripts/train_$DATASET.sh to train the model.


  • The code in tool/pytorch-fid/ is adapated from here
  • The transformer code is adapted from here
Owner
ZENG Xiaohui
ZENG Xiaohui
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022