This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

Overview

PeekingDuckling

1. Description

This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Clarence, Eric Lee and Eric Kwok from other detected faces (Others).

We will be using the PeekingDuck framework for this mini project.

1.1 Example

Face recognition example

2. Usage

2.1 Running the PeekingDuck nodes directly

python -m src.runner
usage: runner.py [-h] [--type {live_video,recorded_video,live_video_and_save}] [--input_filepath INPUT_FILEPATH] [--input_source INPUT_SOURCE] [--save_video_path SAVE_VIDEO_PATH] [--fps FPS]

Facial Recoginition algorithm

optional arguments:
  -h, --help            show this help message and exit
  --type {live_video,recorded_video,live_video_and_save}
                        Whether to use live webcam video or from a recorded video, or from a live webcam video and saving the recorded frames as a video file.
  --input_filepath INPUT_FILEPATH
                        The path to your video files if --type is 'recorded_video'
  --input_source INPUT_SOURCE
                        Input source integer value. Refer to cv2 VideoCapture class. Applicable for --type ['live_video' | 'live_video_and_save']
  --save_video_path SAVE_VIDEO_PATH
                        Path for video to be saved. Applicable for --type 'live_video_and_save'
  --fps FPS             Frames per second for video to be saved. Applicable for --type 'live_video_and_save'

2.2 Using the PeekingDuck from the web interface

python -m src.camera

2.3 Face recognition using only 1 photo

python -m src.app

On a separate terminal, issue the following command

python -m src.python_client <path_to_your_image>

3. Model

3.1 Face Detection

In this repository, we will be using the the library from PeekingDuck to perform facial detection.

For the face detection, the MTCNN pretrained model from the PeekingDuck's framework was being implemented.

3.2 Face Identification

For face identification, cropped images (224 x 224) obtained from Face detection stage is passed to the pretrained RESNET50 model (trained on VGGFace2 dataset) with a global average pooling layer to obtain the Face Embedding. The face embedding is then used to compare to the database of face embeddings obtained from the members to verify if the detected face belongs to one of the 3 members.
Face classification Comparison of the face embedding is done using a 1-NN model, and a threshold is set using cosine similarity, below which the image will be classified as 'others'

The face embeddings were built using 651 images from Clarence, 644 images from Eric Kwok and 939 images from Eric Lee.

A low dimensional representation of the face embedding database of the 3 members using the first 2 principal components from the PCA of the face embeddings can be found in the image below.
PCA of members' face embeddings

Augmentation to have the 4 extra images per image using random rotations of (+/-) 20 degrees and random contrasting were used in building the database so that it can be more robust. The PCA of the augmented database can be seen in the image below
PCA of members' face embeddings with augmentation

4. Performance

The facial classification algorithm was able to achieve an overall accuracy of 99.4% and a weighted F1 score of 99.4% with 183 test images from Clarence, 179 from Eric Kwok, 130 from Eric Lee and 13,100 images from non-members obtained from this database.

Below shows the confusion matrix from the test result.
confusion matrix of test result.

The test was conducted with the tuned threshold on the validation dataset, and the performance of the model with various thresholds can be seen in the graph below. The threshold that yields the best performance is around 0.342.
Performance vs various thresholds

5. Authors and Acknowledgements

The authors would like to thank the mentor Lee Ping for providing us with the technical suggestions as well as the inputs on the implementation of this project.

Authors:

References (Non exhausive)

Owner
Eric Kwok
I am currently an AI apprentice at AISG and my main focus is in the area of CV. I also have an interest and some experience in the field of robotics.
Eric Kwok
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023