A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Overview

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge

This is a platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Change Log

  • 2022-05-16: improved engine backend (Linux) with better stability (v1.0)
    • Check out Supported Platforms for download links.
    • Make sure to update to the latest version of the engine if you would like to use depth map or enemy state features.
  • 2022-05-18: updated engine backend for Windows and MacOS (v1.0)

Competition Overview

With a focus on learning intelligent agents in open-world games, this year we are hosting a new contest called Wilderness Scavenger. In this new game, which features a Battle Royale-style 3D open-world gameplay experience and a random PCG-based world generation, participants must learn agents that can perform subtasks common to FPS games, such as navigation, scouting, and skirmishing. To win the competition, agents must have strong perception of complex 3D environments and then learn to exploit various environmental structures (such as terrain, buildings, and plants) by developing flexible strategies to gain advantages over other competitors. Despite the difficulty of this goal, we hope that this new competition can serve as a cornerstone of research in AI-based gaming for open-world games.

Features

  • A light-weight 3D open-world FPS game developed with Unity3D game engine
  • Rendering-off game acceleration for fast training and evaluation
  • Large open world environment providing high freedom of agent behaviors
  • Highly customizable game configuration with random supply distribution and dynamic refresh
  • PCG-based map generation with randomly spawned buildings, plants and obstacles (100 training maps)
  • Interactive replay tool for game record visualization

Basic Structures

We developed this repository to provide a training and evaluation platform for the researchers interested in open-world FPS game AI. For getting started quickly, a typical workspace structure when using this repository can be summarized as follows:

.
├── examples  # providing starter code examples and training baselines
│   ├── envs/...
│   ├── basic.py
│   ├── basic_track1_navigation.py
│   ├── basic_track2_supply_gather.py
│   ├── basic_track3_supply_battle.py
│   ├── baseline_track1_navigation.py
│   ├── baseline_track2_supply_gather.py
│   └── baseline_track3_supply_battle.py
├── inspirai_fps  # the game play API source code
│   ├── lib/...
│   ├── __init__.py
│   ├── gamecore.py
│   ├── raycast_manager.py
│   ├── simple_command_pb2.py
│   ├── simple_command_pb2_grpc.py
│   └── utils.py
└── fps_linux  # the engine backend (Linux)
    ├── UnityPlayer.so
    ├── fps.x86_64
    ├── fps_Data/...
    └── logs/...
  • fps_linux (requires to be manually downloaded and unzipped to your working directory): the (Linux) engine backend extracted from our game development project, containing all the game related assets, binaries and source codes.
  • inspirai_fps: the python gameplay API for agent training and testing, providing the core Game class and other useful tool classes and functions.
  • examples: we provide basic starter codes for each game mode targeting each track of the challenge, and we also give out our implementation of some baseline solutions based on ray.rllib reinforcement learning framework.

Supported Platforms

We support the multiple platforms with different engine backends, including:

Installation (from source)

To use the game play API, you need to first install the package inspirai_fps by following the commands below:

git clone https://github.com/inspirai/wilderness-scavenger
cd wilderness-scavenger
pip install .

We recommend installing this package with python 3.8 (which is our development environment), so you may first create a virtual env using conda and finish installation:

$ conda create -n WildScav python=3.8
$ conda activate WildScav
(WildScav) $ pip install .

Installation (from PyPI)

Note: this may not be maintained in time. We strongly recommend using the installation method above

Alternatively, you can install the package from PyPI directly. But note that this will only install the gameplay API inspirai_fps, not the backend engine. So you still need to manually download the correct engine backend from the Supported Platfroms section.

pip install inspirai-fps

Loading Engine Backend

To successfully run the game, you need to make sure the game engine backend for your platform is downloaded and set the engine_dir parameter of the Game init function correctly. For example, here is a code snippet in the script example/basic.py:

from inspirai_fps import Game, ActionVariable
...
parser.add_argument("--engine-dir", type=str, default="../fps_linux")
...
game = Game(..., engine_dir=args.engine_dir, ...)

Loading Map Data

To get access to some features like realtime depth map computation or randomized player spawning, you need to load the map data and load them into the Game. After this, once you turn on the depth map rendering, the game server will automatically compute a depth map viewing from the player's first person perspective at each time step.

  1. Download map data from Google Drive or Feishu and decompress the downloaded file to your preferred directory (e.g., <WORKDIR>/map_data).
  2. Set map_dir parameter of the Game initializer accordingly
  3. Set the map_id as you like
  4. Turn on the function of depth map computation
  5. Turn on random start location to spawn agents at random places

Read the following code snippet in the script examples/basic.py as an example:

from inspirai_fps import Game, ActionVariable
...
parser.add_argument("--map-id", type=int, default=1)
parser.add_argument("--use-depth-map", action="store_true")
parser.add_argument("--random-start-location", action="store_true")
parser.add_argument("--map-dir", type=str, default="../map_data")
...
game = Game(map_dir=args.map_dir, ...)
game.set_map_id(args.map_id)  # this will load the valid locations of the specified map
...
if args.use_depth_map:
    game.turn_on_depth_map()
    game.set_depth_map_size(380, 220, 200)  # width (pixels), height (pixels), depth_limit (meters)
...
if args.random_start_location:
    for agent_id in range(args.num_agents):
        game.random_start_location(agent_id, indoor=False)  # this will randomly spawn the player at a valid outdoor location, or indoor location if indoor is True
...
game.new_episode()  # start a new episode, this will load the mesh of the specified map

Gameplay Visualization

We have also developed a replay visualization tool based on the Unity3D game engine. It is similar to the spectator mode common in multiplayer FPS games, which allows users to interactively follow the gameplay. Users can view an agent's action from different perspectives and also switch between multiple agents or different viewing modes (e.g., first person, third person, free) to see the entire game in a more immersive way. Participants can download the tool for their specific platforms here:

To use this tool, follow the instruction below:

  • Decompress the downloaded file to anywhere you prefer.
  • Turn on recording function with game.turn_on_record(). One record file will be saved at the end of each episode.

Find the replay files under the engine directory according to your platform:

  • Linux: <engine_dir>/fps_Data/StreamingAssets/Replay
  • Windows: <engine_dir>\FPSGameUnity_Data\StreamingAssets\Replay
  • MacOS: <engine_dir>/Contents/Resources/Data/StreamingAssets/Replay

Copy replay files you want to the replay tool directory according to your platform and start the replay tool.

For Windows users:

  • Copy the replay file (e.g. xxx.bin) into <replayer_dir>/FPSGameUnity_Data/StreamingAssets/Replay
  • Run FPSGameUnity.exe to start the application.

For MacOS users:

  • Copy the replay file (e.g. xxx.bin) into <replayer_dir>/Contents/Resources/Data/StreamingAssets/Replay
  • Run fps.app to start the application.

In the replay tool, you can:

  • Select the record you want to watch from the drop-down menu and click PLAY to start playing the record.
  • During the replay, users can make the following operations
    • Press Tab: pause or resume
    • Press E: switch observation mode (between first person, third person, free)
    • Press Q: switch between multiple agents
    • Press ECS: stop replay and return to the main menu
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022