Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Overview

Density-aware Chamfer Distance

This repository contains the official PyTorch implementation of our paper:

Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion, NeurIPS 2021

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, Dahua Lin

avatar

We present a new point cloud similarity measure named Density-aware Chamfer Distance (DCD). It is derived from CD and benefits from several desirable properties: 1) it can detect disparity of density distributions and is thus a more intensive measure of similarity compared to CD; 2) it is stricter with detailed structures and significantly more computationally efficient than EMD; 3) the bounded value range encourages a more stable and reasonable evaluation over the whole test set. DCD can be used as both an evaluation metric and the training loss. We mainly validate its performance on point cloud completion in our paper.

This repository includes:

  • Implementation of Density-aware Chamfer Distance (DCD).
  • Implementation of our method for this task and the pre-trained model.

Installation

Requirements

  • PyTorch 1.2.0
  • Open3D 0.9.0
  • Other dependencies are listed in requirements.txt.

Install

Install PyTorch 1.2.0 first, and then get the other requirements by running the following command:

bash setup.sh

Dataset

We use the MVP Dataset. Please download the train set and test set and then modify the data path in data/mvp_new.py to the your own data location. Please refer to their codebase for further instructions.

Usage

Density-aware Chamfer Distance

The function for DCD calculation is defined in def calc_dcd() in utils/model_utils.py.

Users of higher PyTorch versions may try def calc_dcd() in utils_v2/model_utils.py, which has been tested on PyTorch 1.6.0 .

Model training and evaluation

  • To train a model: run python train.py ./cfgs/*.yaml, for example:
python train.py ./cfgs/vrc_plus.yaml
  • To test a model: run python train.py ./cfgs/*.yaml --test_only, for example:
python train.py ./cfgs/vrc_plus_eval.yaml --test_only
  • Config for each algorithm can be found in cfgs/.
  • run_train.sh and run_test.sh are provided for SLURM users.

We provide the following config files:

  • pcn.yaml: PCN trained with CD loss.
  • vrc.yaml: VRCNet trained with CD loss.
  • pcn_dcd.yaml: PCN trained with DCD loss.
  • vrc_dcd.yaml: VRCNet trained with DCD loss.
  • vrc_plus.yaml: training with our method.
  • vrc_plus_eval.yaml: evaluation of our method with guided down-sampling.

Attention: We empirically find that using DP or DDP for training would slightly hurt the performance. So training on multiple cards is not well supported currently.

Pre-trained models

We provide the pre-trained model that reproduce the results in our paper. Download and extract it to the ./log/pretrained/ directory, and then evaluate it with cfgs/vrc_plus_eval.yaml. The setting prob_sample: True turns on the guided down-sampling. We also provide the model for VRCNet trained with DCD loss here.

Citation

If you find our code or paper useful, please cite our paper:

@inproceedings{wu2021densityaware,
  title={Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion},
  author={Tong Wu, Liang Pan, Junzhe Zhang, Tai WANG, Ziwei Liu, Dahua Lin},
  booktitle={In Advances in Neural Information Processing Systems (NeurIPS), 2021},
  year={2021}
}

Acknowledgement

The code is based on the VRCNet implementation. We include the following PyTorch 3rd-party libraries: ChamferDistancePytorch, emd, expansion_penalty, MDS, and Pointnet2.PyTorch. Thanks for these great projects.

Contact

Please contact @wutong16 for questions, comments and reporting bugs.

Owner
Tong WU
Tong WU
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio

Eliahu Horwitz 55 Dec 14, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022