MogFace: Towards a Deeper Appreciation on Face Detection

Related tags

Deep LearningMogFace
Overview

MogFace: Towards a Deeper Appreciation on Face Detection

Introduction

  • In this repo, we propose a promising face detector, termed as MogFace.

  • Our MogFace consists of 3 novel modules, including Ali-AMS, SSE and HCAM.

  • Our MogFace achieves six champions on WIDER FACE.

Prepare Environment

conda create -n MogFace python=3.6
conda activate MogFace
pip install -r requirements.txt
cd utils/nms && python setup.py build_ext --inplace && cd ../..
cd utils/bbox && python setup.py build_ext --inplace && cd ../..

Data Preparation

  1. Download preatrain_weights into pretrain_weights
  2. Download the WIDERFACE dataset.
  3. Organize the dataset directory under Mogface/ as follows; We also provide the organized dataset.
  dataset/WIDERFACE/
    WIDER_train/
      images/
    WIDER_val/
      images/
    WIDER_test/
      images/
    wider_face_split/
      wider_face_train_bbx_gt.txt
      wider_face_val.mat
      wider_face_test.mat
    ground_truth/

Training

  1. Train Ali-AMS
  CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py -c configs/mogface/MogFace_Ali-AMS.yml
  1. Train SSE
  CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py -c configs/mogface/MogFace_SSE.yml
  1. Train HCAM
  CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py -c configs/mogface/MogFace_HCAM.yml

Testing

  1. Single scale test on $CONFIG_FILE$
  CUDA_VISIBLE_DEVICES=0 python test_single.py -c $CONFIG_FILE$
  CUDA_VISIBLE_DEVICES=0 python test_single.py -c configs/mogface/MogFace_Ali-AMS.yml
  1. Multi scale test on $CONFIG_FILE$
  CUDA_VISIBLE_DEVICES=0 python test_multi.py -c $CONFIG_FILE$

MogFace Pretrained Models

Name Easy Medium Hard Link
MogFace_Ali-AMS (SS_test) 94.6 93.6 87.3 download
MogFace_SSE (SS_test) 95.6 94.1 - download
MogFace_HCAM (SS_test) 95.1 94.2 87.4 download
MogFace-E (MS_test) 97.7 96.9 92.0 download
MogFace (MS_test) 97.0 96.3 93.0 download
  • MS_Test: multi-scale testing
  • SS_Test: single-scale testing
  CUDA_VISIBLE_DEVICES=0 python test_multi.py -c configs/mogface/MogFace.yml -n 140 --test_hard 1
  CUDA_VISIBLE_DEVICES=1 python test_multi.py -c configs/mogface/MogFace_E.yml -n 140

The best MogFace model and some tricks will be released soon.

USAGE

  1. Download MogFace-E Pretrained Model from link
  2. mkdir -p snapshots/MogFace-E && mv model_140000.pth snapshots/MogFace-E/
  3. CUDA_VISIBLE_DEVICES=0 python test_multi.py -c configs/mogface/MogFace-E.yml -n 140
Owner
A vision team from Alibaba
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022