Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

Overview

CorrelAid Machine Learning Winter School

Welcome to the CorrelAid ML Winter School!

Task

The problem we want to solve is to classify trees in Roosevelt National Forest.

Setup

Please make sure you have a modern Python 3 installation. We recommend the Python distribution Miniconda that is available for all OS.

The easiest way to get started is with a clean virtual environment. You can do so by running the following commands, assuming that you have installed Miniconda or Anaconda.

$ conda create -n winter-school python=3.9
$ conda activate winter-school
(winter-school) $ pip install -r requirements.txt
(winter-school) $ python -m ipykernel install --user --name winter-school --display-name "Python 3.9 (winter-school)"

The first command will create a new environment with Python 3.9. To use this environment, you call conda activate <name> with the name of the environment as second step. Once activated, you can install packages as usual with the pip package manager. You will install all listed requirements from the provided requirements.txt as a third step. Finally, to actually make your new environment available as kernel within a Jupyter notebook, you need to run ipykernel install, which is the fourth command.

Once the setup is complete, you can run any notebook by calling

(winter-school) $ <jupyter-lab|jupyter notebook>

jupyter lab is opening your browser with a local version of JupyterLab, which is a web-based interactive development environment that is somewhat more powerful and more modern than the older Jupyter Notebook. Both work fine, so you can choose the tool that is more to your liking. We recommend to go with Jupyter Lab as it provides a file browser, among other improvements.

Data

The data to be analyzed is one of the classic data sets from the UCI Machine Learning Repository, the Forest Cover Type Dataset.

The dataset contains tree observations from four areas of the Roosevelt National Forest in Colorado. All observations are cartographic variables (no remote sensing) from 30 meter x 30 meter sections of forest. There are over half a million measurements total!

The dataset includes information on tree type, shadow coverage, distance to nearby landmarks (roads etcetera), soil type, and local topography.

Note: We provide the data set as it can be downloaded from kaggle and not in its original form from the UCI repository.

Attribute Information:

Given is the attribute name, attribute type, the measurement unit and a brief description. The forest cover type is the classification problem. The order of this listing corresponds to the order of numerals along the rows of the database.

Name / Data Type / Measurement / Description

  • Elevation / quantitative /meters / Elevation in meters
  • Aspect / quantitative / azimuth / Aspect in degrees azimuth
  • Slope / quantitative / degrees / Slope in degrees
  • Horizontal_Distance_To_Hydrology / quantitative / meters / Horz Dist to nearest surface water features
  • Vertical_Distance_To_Hydrology / quantitative / meters / Vert Dist to nearest surface water features
  • Horizontal_Distance_To_Roadways / quantitative / meters / Horz Dist to nearest roadway
  • Hillshade_9am / quantitative / 0 to 255 index / Hillshade index at 9am, summer solstice
  • Hillshade_Noon / quantitative / 0 to 255 index / Hillshade index at noon, summer soltice
  • Hillshade_3pm / quantitative / 0 to 255 index / Hillshade index at 3pm, summer solstice
  • Horizontal_Distance_To_Fire_Points / quantitative / meters / Horz Dist to nearest wildfire ignition points
  • Wilderness_Area (4 binary columns) / qualitative / 0 (absence) or 1 (presence) / Wilderness area designation
  • Soil_Type (40 binary columns) / qualitative / 0 (absence) or 1 (presence) / Soil Type designation
  • Cover_Type (7 types) / integer / 1 to 7 / Forest Cover Type designation
Owner
CorrelAid
Soziales Engagement 2.0 - Datenanalyse für den guten Zweck
CorrelAid
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022