Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

Overview

CAPE 🌴 pylint pytest

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Setup 🔧

Minimum requirements:

torch >= 1.10.0

Install from source:

git clone https://github.com/gcambara/cape.git
cd cape
pip install --editable ./

Usage 📖

Ready to go along with PyTorch's official implementation of Transformers. Default initialization behaves identically as sinusoidal positional embeddings, summing them up to your content embeddings:

from torch import nn
from cape import CAPE1d

pos_emb = CAPE1d(d_model=512)
transformer = nn.Transformer(d_model=512)

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x = pos_emb(x) # forward sums the positional embedding by default
x = transformer(x)

Alternatively, you can get positional embeddings separately

x = torch.randn(10, 32, 512)
pos_emb = pos_emb.compute_pos_emb(x)

scale = 512**0.5
x = (scale * x) + pos_emb
x = transformer(x)

Let's see a few examples of CAPE initialization for different modalities, inspired by the original paper experiments.

CAPE for text 🔤

CAPE1d is ready to be applied to text. Keep max_local_shift between 0 and 0.5 to shift local positions without disordering them.

from cape import CAPE1d
pos_emb = CAPE1d(d_model=512, max_global_shift=5.0, 
                 max_local_shift=0.5, max_global_scaling=1.03, 
                 normalize=False)

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x = pos_emb(x)

Padding is supported by indicating the length of samples in the forward method, with the x_lengths argument. For example, the original length of samples is 7, although they have been padded to sequence length 10.

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x_lengths = torch.ones(32)*7
x = pos_emb(x, x_lengths=x_lengths)

CAPE for audio 🎙️

CAPE1d for audio is applied similarly to text. Use positions_delta argument to set the separation in seconds between time steps, and x_lengths for indicating sample durations in case there is padding.

For instance, let's consider no padding and same hop size (30 ms) at every sample in the batch:

# Max global shift is 60 s.
# Max local shift is set to 0.5 to maintain positional order.
# Max global scaling is 1.1, according to WSJ recipe.
# Freq scale is 30 to ensure that 30 ms queries are possible with long audios
from cape import CAPE1d
pos_emb = CAPE1d(d_model=512, max_global_shift=60.0, 
                 max_local_shift=0.5, max_global_scaling=1.1, 
                 normalize=True, freq_scale=30.0)

x = torch.randn(100, 32, 512) # seq_len, batch_size, n_feats
positions_delta = 0.03 # 30 ms of stride
x = pos_emb(x, positions_delta=positions_delta)

Now, let's imagine that the original duration of all samples is 2.5 s, although they have been padded to 3.0 s. Hop size is 30 ms for every sample in the batch.

x = torch.randn(100, 32, 512) # seq_len, batch_size, n_feats

duration = 2.5
positions_delta = 0.03
x_lengths = torch.ones(32)*duration
x = pos_emb(x, x_lengths=x_lengths, positions_delta=positions_delta)

What if the hop size is different for every sample in the batch? E.g. first half of the samples have stride of 30 ms, and the second half of 50 ms.

positions_delta = 0.03
positions_delta = torch.ones(32)*positions_delta
positions_delta[16:] = 0.05
x = pos_emb(x, positions_delta=positions_delta)
positions_delta
tensor([0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300,
        0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0500, 0.0500,
        0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500,
        0.0500, 0.0500, 0.0500, 0.0500, 0.0500])

Lastly, let's consider a very rare case, where hop size is different for every sample in the batch, and is not constant within some samples. E.g. stride of 30 ms for the first half of samples, and 50 ms for the second half. However, the hop size of the very first sample linearly increases for each time step.

from einops import repeat
positions_delta = 0.03
positions_delta = torch.ones(32)*positions_delta
positions_delta[16:] = 0.05
positions_delta = repeat(positions_delta, 'b -> b new_axis', new_axis=100)
positions_delta[0, :] *= torch.arange(1, 101)
x = pos_emb(x, positions_delta=positions_delta)
positions_delta
tensor([[0.0300, 0.0600, 0.0900,  ..., 2.9400, 2.9700, 3.0000],
        [0.0300, 0.0300, 0.0300,  ..., 0.0300, 0.0300, 0.0300],
        [0.0300, 0.0300, 0.0300,  ..., 0.0300, 0.0300, 0.0300],
        ...,
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500],
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500],
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500]])

CAPE for ViT 🖼️

CAPE2d is used for embedding positions in image patches. Scaling of positions between [-1, 1] is done within the module, whether patches are square or non-square. Thus, set max_local_shift between 0 and 0.5, and the scale of local shifts will be adjusted according to the height and width of patches. Beyond values of 0.5 the order of positions might be altered, do this at your own risk!

from cape import CAPE2d
pos_emb = CAPE2d(d_model=512, max_global_shift=0.5, 
                 max_local_shift=0.5, max_global_scaling=1.4)

# Case 1: square patches
x = torch.randn(16, 16, 32, 512) # height, width, batch_size, n_feats
x = pos_emb(x)

# Case 2: non-square patches
x = torch.randn(24, 16, 32, 512) # height, width, batch_size, n_feats
x = pos_emb(x)

Citation ✍️

I just did this PyTorch implementation following the paper's Python code and the Flashlight recipe in C++. All the credit goes to the original authors, please cite them if you use this for your research project:

@inproceedings{likhomanenko2021cape,
title={{CAPE}: Encoding Relative Positions with Continuous Augmented Positional Embeddings},
author={Tatiana Likhomanenko and Qiantong Xu and Gabriel Synnaeve and Ronan Collobert and Alex Rogozhnikov},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=n-FqqWXnWW}
}

Acknowledgments 🙏

Many thanks to the paper's authors for code reviewing and clarifying doubts about the paper and the implementation. :)

You might also like...
Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

A PyTorch Implementation of
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

PyTorch implementation of the NIPS-17 paper
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Styled Augmented Translation
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Releases(v1.0.0)
Owner
Guillermo Cámbara
🎙️ PhD Candidate in Self-Supervised Learning + Speech Recognition @ Universitat Pompeu Fabra & Telefónica Research
Guillermo Cámbara
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022