DNA sequence classification by Deep Neural Network

Overview

DNA sequence classification by Deep Neural Network: Project Overview

  • worked on the DNA sequence classification problem where the input is the DNA sequence and the output class states whether a certain histone protein is present on the sequence or not.
  • used one of the datasets from 12 different datasets that we have collected. The name of the dataset is H3K4me2
  • To represent a sequence, we have utilized k-mer representation
  • For the sequence embedding we have used one-hot encoding
  • Different word embedding models: Word2Vec, BERT, Keras Embedding layer, Bi-LSTM, and CNN

Bioinformatics Project - B.Sc. in Computer Science and Engineering (CSE)

Created by: - Md. Tarek Hasan, Mohammed Jawwadul Islam, Md Fahad Al Rafi, Arifa Akter, Sumayra Islam

Date of Completion: - Fall 2021 Trimester (Nov 2021 - Jan 2022)

Linkedin of Jawwadul

Linkedin of Tarek

Linkedin of Fahad

Linkedin of Arifa

Linkedin of Sumayra

Code and Resources Used

  • Python Version: 3.7.11
  • Packages: numpy, pandas, keras, tensorflow, sklearn
  • Dataset from: Nguyen who is one the authors of the paper titled “DNA sequence classification by convolutional neural network”

Features of the Dataset

DNA sequences wrapped around histone proteins are the subject of datasets

  • For our experiment, we selected one of the datasets entitled H3K4me2.
  • H3K4me2 has 30683 DNA sequences whose 18143 samples fall under the positive class, the rest of the samples fall under the negative class, and it makes the problem binary class classification.
  • The ratio of the positive-negative class is around (59:41)%.
  • The class label represents the presence of H3K4me2 histone proteins in the sequences.
  • The base length of the sequences is 500.

Data Preprocessing

  • The datasets were gathered in.txt format. We discovered that the dataset contains id, sequence, and class label during the Exploratory Data Analysis phase of our work.
  • We dropped the id column from the dataset because it is the only trait that all of the samples share.
  • Except for two samples, H3K4me2 includes 36799 DNA sequences, the majority of which are 500 bases long. Those two sequences have lengths of 310 and 290, respectively. To begin, we employed the zero-padding strategy to tackle the problem. However, because there are only two examples of varying lengths, we dropped those two samples from the dataset later for experiments, as these samples may cause noise.
  • we have used the K-mer sequence representation technique to represent a DNA sequence, we have used the K-mer sequence representation technique
  • For sequence emdedding after applying the 3-mer representation technique, we have experimented using different embedding techniques. The first three embedding methods are named SequenceEmbedding1D, SequenceEmbedding2D, SequenceEmbedding2D_V2, Word2Vec and BERT.
    • SequenceEmbedding1D is the one-dimensional representation of a single DNA sequence which is basically the one-hot encoding.
    • SequenceEmbedding2D is the two-dimensional representation of a single DNA sequence where the first row is the one-hot encoding of a sequence after applying 3-mer representation. The second row is the one-hot encoding of a left-rotated sequence after applying 3-mer representation.
    • the third row of SequenceEmbedding2D_V2 is the one-hot encoding of a right-rotated sequence after applying 3-mer representation.
    • Word2Vec and BERT are the word embedding techniques for language modeling.

Deep Learning Models

After the completion of sequence embedding, we have used deep learning models for the classification task. We have used two different deep learning models for this purpose, one is Convolutional Neural Network (CNN) and the other is Bidirectional Long Short-Term Memory (Bi-LSTM).

Experimental Analysis

After the data cleaning phase, we had 36797 samples. We have used 80% of the whole dataset for training and the rest of the samples for testing. The dataset has been split using train_test_split from sklearn.model_selection stratifying by the class label. We have utilized 10% of the training data for validation purposes. For the first five experiments we have used batch training as it was throwing an exception of resource exhaustion.

The evaluation metrics we used for our experiments are accuracy, precision, recall, f1-score, and Matthews Correlation Coefficient (MCC) score. The minimum value of accuracy, precision, recall, f1-score can be 0 and the maximum value can be 1. The minimum value of the MCC score can be -1 and the maximum value can be 1.

image

Discussion

MCC score 0 indicates the model's randomized predictions. The recall score indicates how well the classifier can find all positive samples. We can say that the model's ability to classify all positive samples has been at an all-time high over the last five experiments. The highest MCC score we received was 0.1573, indicating that the model is very near to predicting in a randomized approach. We attain a maximum accuracy of 60.27%, which is much lower than the state-of-the-art result of 71.77%. To improve the score, we need to emphasize more on the sequence embedding approach. Furthermore, we can experiment with various deep learning techniques.

Owner
Mohammed Jawwadul Islam Fida
CSE student. Founding Vice President of Students' International Affairs Society at CIAC, UIU
Mohammed Jawwadul Islam Fida
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022