Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

Related tags

Deep LearningSPICE
Overview

SPICE: Semantic Pseudo-labeling for Image Clustering

By Chuang Niu and Ge Wang

This is a Pytorch implementation of the paper. (In updating)

PWC PWC PWC PWC PWC

Installation

Please refer to requirement.txt for all required packages. Assuming Anaconda with python 3.7, a step-by-step example for installing this project is as follows:

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
conda install -c conda-forge addict tensorboard python-lmdb
conda install matplotlib scipy scikit-learn pillow

Then, clone this repo

git clone https://github.com/niuchuangnn/SPICE.git
cd SPICE

Data

Prepare datasets of interest as described in dataset.md.

Training

Read the training tutorial for details.

Evaluation

Evaluation of SPICE-Self:

python tools/eval_self.py --config-file configs/stl10/eval.py --weight PATH/TO/MODEL --all 1

Evaluation of SPICE-Semi:

python tools/eval_semi.py --load_path PATH/TO/MODEL --net WideResNet --widen_factor 2 --data_dir PATH/TO/DATA --dataset cifar10 --all 1 

Read the evaluation tutorial for more descriptions about the evaluation and the visualization of learned clusters.

Model Zoo

All trained models in our paper are available as follows.

Dataset Version ACC NMI ARI Model link
STL10 SPICE-Self 91.0 82.0 81.5 Model
SPICE 93.8 87.2 87.0 Model
SPICE-Self* 89.9 80.9 79.7 Model
SPICE* 92.9 86.0 85.3 Model
CIFAR10 SPICE-Self 83.8 73.4 70.5 Model
SPICE 92.6 86.5 85.2 Model
SPICE-Self* 84.9 74.5 71.8 Model
SPICE* 91.7 85.8 83.6 Model
CIFAR100 SPICE-Self 46.8 44.8 29.4 Model
SPICE 53.8 56.7 38.7 Model
SPICE-Self* 48.0 45.0 30.8 Model
SPICE* 58.4 58.3 42.2 Model
ImageNet-10 SPICE-Self 96.9 92.7 93.3 Model
SPICE 96.7 91.7 92.9 Model
ImageNet-Dog SPICE-Self 54.6 49.8 36.2 Model
SPICE 55.4 50.4 34.3 Model
TinyImageNet SPICE-Self 30.5 44.9 16.3 Model
SPICE-Self* 29.2 52.5 14.5 Model

More models based on ResNet18 for both SPICE-Self* and SPICE-Semi*.

Dataset Version ACC NMI ARI Model link
STL10 SPICE-Self* 86.2 75.6 73.2 Model
SPICE* 92.0 85.2 83.6 Model
CIFAR10 SPICE-Self* 84.5 73.9 70.9 Model
SPICE* 91.8 85.0 83.6 Model
CIFAR100 SPICE-Self* 46.8 45.7 32.1 Model
SPICE* 53.5 56.5 40.4 Model

Acknowledgement for reference repos

Citation

@misc{niu2021spice,
      title={SPICE: Semantic Pseudo-labeling for Image Clustering}, 
      author={Chuang Niu and Ge Wang},
      year={2021},
      eprint={2103.09382},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Chuang Niu
Chuang Niu
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022