Contrastive Learning with Non-Semantic Negatives

Overview

Contrastive Learning with Non-Semantic Negatives

This repository is the official implementation of Robust Contrastive Learning Using Negative Samples with Diminished Semantics. Contrastive learning utilizes positive pairs which preserve semantic information while perturbing superficial features in the training images. Similarly, we propose to generate negative samples to make the model more robust, where only the superfluous instead of the semantic features are preserved.

Preparation

Install PyTorch and check preprocess/ for ImageNet-100 and ImageNet-Texture preprocessing scripts.

Training

The following code is used to pre-train MoCo-v2 + patch / texture-based NS. The major code is developed with minimal modifications from the official implementation.

python moco-non-sem-neg.py -a resnet50 --lr 0.03 --batch-size 128 --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --mlp --moco-t 0.2 --aug-plus --cos --moco-k 16384 \
  --robust nonsem --num-nonsem 1 --alpha 2 --epochs 200 --patch-ratio 16 72 \
  --ckpt_path ./ckpts/mocov2_mocok16384_bs128_lr0.03_nonsem_16_72_noaug_nn1_alpha2_epoch200  \
  /path/to/imagenet-100/ 

python moco-non-sem-neg.py -a resnet50 --lr 0.03 --batch-size 128 --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --mlp --moco-t 0.2 --aug-plus --cos --moco-k 16384 \
  --robust texture_syn --num-nonsem 1 --alpha 2 --epochs 200 \
  --ckpt_path ./ckpts/mocov2_mocok16384_bs128_lr0.03_texture_nn1_alpha2_epoch200 \
  /path/to/imagenet-100-texture/ 
  • Change /path/to/imagenet-100/ with the ImageNet-100 dataset directory.
  • Change --alpha and -moco-k to reproduce results with different configurations.

Linear Evaluation

Run following code is used to reproduce MoCo-v2 + patch-based NS model reported in Table 1.

python main_lincls.py -a resnet50 --lr 10.0 --batch-size 128 --epochs 60 \
  --pretrained ./ckpts/mocov2_mocok16384_bs128_lr0.03_nonsem_16_72_noaug_nn1_alpha2_epoch200/checkpoint_0199.pth.tar \
  --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 \
  --ckpt_path ./ckpts/mocov2_mocok16384_bs128_lr0.03_nonsem_16_72_noaug_nn1_alpha2_epoch200 \
  /path/to/imagenet-100/ 

Pre-trained Models

You can download pretrained models here:

moco-k alpha ImageNet-100 Corruption Sketch Stylized Rendition Checkpoints
MoCo-v2 16384 - 77.88±0.28 43.08±0.27 28.24±0.58 16.20±0.55 32.92±0.12 Run1, Run2, Run3
+ Texture 16384 2 77.76±0.17 43.58±0.33 29.11±0.39 16.59±0.17 33.36±0.15 Run1, Run2, Run3
+ Patch 16384 2 79.35±0.12 45.13±0.35 31.76±0.88 17.37±0.19 34.78±0.15 Run1, Run2, Run3
+ Patch 16384 3 75.58±0.52 44.45±0.15 34.03±0.58 18.60±0.26 36.89±0.11 Run1, Run2, Run3
MoCo-v2 8192 - 77.73±0.38 43.22±0.39 28.45±0.36 16.83±0.12 33.19±0.44 Run1, Run2, Run3
+ Patch 8192 2 79.54±0.32 45.48±0.20 33.36±0.45 17.81±0.32 36.31±0.37 Run1, Run2, Run3
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022