Focal and Global Knowledge Distillation for Detectors

Related tags

Deep LearningFGD
Overview

FGD

Paper: Focal and Global Knowledge Distillation for Detectors

Install MMDetection and MS COCO2017

  • Our codes are based on MMDetection. Please follow the installation of MMDetection and make sure you can run it successfully.
  • This repo uses mmdet==2.11.0 and mmcv-full==1.2.4

Add and Replace the codes

  • Add the configs/. in our codes to the configs/ in mmdetectin's codes.
  • Add the mmdet/distillation/. in our codes to the mmdet/ in mmdetectin's codes.
  • Replace the mmdet/apis/train.py and tools/train.py in mmdetection's codes with mmdet/apis/train.py and tools/train.py in our codes.
  • Add pth_transfer.py to mmdetection's codes.
  • Unzip COCO dataset into data/coco/

Train

#single GPU
python tools/train.py configs/distillers/fgd/fgd_retina_rx101_64x4d_distill_retina_r50_fpn_2x_coco.py

#multi GPU
bash tools/dist_train.sh configs/distillers/fgd/fgd_retina_rx101_64x4d_distill_retina_r50_fpn_2x_coco.py 8

Transfer

# Tansfer the FGD model into mmdet model
python pth_transfer.py --fgd_path $fgd_ckpt --output_path $new_mmdet_ckpt

Test

#single GPU
python tools/test.py configs/retinanet/retinanet_r50_fpn_2x_coco.py $new_mmdet_ckpt --eval bbox

#multi GPU
bash tools/dist_test.sh configs/retinanet/retinanet_r50_fpn_2x_coco.py $new_mmdet_ckpt 8 --eval bbox

Results

Model Backbone mAP config weight code
RetinaNet ResNet-50 40.7 config baidu wsfw
RetinaNet ResNet-101 41.7 config
Faster RCNN ResNet-50 42.0 config baidu dgpf
Faster RCNN ResNet-101 44.1 config
RepPoints ResNet-50 42.0 config baidu qx5d
RepPoints ResNet-101 43.8 config
FCOS ResNet-50 42.7 config baidu sedt
MaskRCNN ResNet-50 42.1 config baidu sv8m

Acknowledgement

Our code is based on the project MMDetection.

Thanks to the work GCNet and mmetection-distiller.

Owner
Mesopotamia
Mesopotamia
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023