UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

Overview

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

Code Summary

aggregate.py: this script aggregates the scores outputted by expriments.py

experiments.py: This script runs UNAVIODS and some comparison algorithms across a grid of parameters on a window specified by a command line argument.

genPrevelanceArrs.py: Thus script creates Pis_\[i\].npy for each i, where i corresponds to the index of the i^th prevelance in the array Pis each Pis_\[i\].npy contains a n' < n length vector of indicies, such that the prevelance of outliers in the subset pointed to by these indicies corresponds to the ith value of Pis.

genSimulatedDataSet.py: This script generates a simulated dataset

genSimulationNCDFs.py: This script finds the NCDFs for simulated data using different norms and numbers of features, then creates CSV files for LaTeX to plot the NCDFs

loadAndCleanDoH.py: This file loads and cleans the data from the CIRA-CIC-DoHBrw-2020 data set

loadAndCleanIDS.py: This file loads and cleans the data from the CICIDS2017 data set

txtToLatex.py: This file loads the TXT file outputted by aggregate.py and creates several CSV's saved in \[outfolder\]. These can be used by our LaTeX code to create latex plots.

txtToLatex.py: the unavoids outlier detection and visualization library. All functions have a docstring describe their use.

main.py: basic usuage example of the unavioids library

References

W. A. Yousef, I. Traoré and W. Briguglio, "UN-AVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring," in IEEE Transactions on Information Forensics and Security, vol. 16, pp. 5195-5210, 2021, doi: 10.1109/TIFS.2021.3125608.

This repo as a capsul on CodeOcean

https://codeocean.com/capsule/2122579/tree/v1

Citation

Please, cite this work as:

@ARTICLE{Yousef2021UNAVOIDS,
  author={Yousef, Waleed A. and Traoré, Issa and Briguglio, William},
  journal={IEEE Transactions on Information Forensics and Security}, 
  title={UN-AVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring}, 
  year={2021},
  volume={16},
  pages={5195-5210},
  doi={10.1109/TIFS.2021.3125608}}
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022