Code for LIGA-Stereo Detector, ICCV'21

Overview

LIGA-Stereo

Introduction

This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector, In ICCV'21, Xiaoyang Guo, Shaoshuai Shi, Xiaogang Wang and Hongsheng Li.

[project page] [paper] [code]

Framework

Overview

Installation

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 14.04 / 16.04)
  • Python 3.7
  • PyTorch 1.6.0
  • Torchvision 0.7.0
  • CUDA 9.2 / 10.1
  • spconv (commit f22dd9)

Installation Steps

a. Clone this repository.

git clone https://github.com/xy-guo/LIGA.git

b. Install the dependent libraries as follows:

  • Install the dependent python libraries:
pip install -r requirements.txt 
  • Install the SparseConv library, we use the implementation from [spconv].
git clone https://github.com/traveller59/spconv
git reset --hard f22dd9
git submodule update --recursive
python setup.py bdist_wheel
pip install ./dist/spconv-1.2.1-cp37-cp37m-linux_x86_64.whl
git clone https://github.com/xy-guo/mmdetection_kitti
python setup.py develop

c. Install this library by running the following command:

python setup.py develop

Getting Started

The dataset configs are located within configs/stereo/dataset_configs, and the model configs are located within configs/stereo for different datasets.

Dataset Preparation

Currently we only provide the dataloader of KITTI dataset.

  • Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes are provided by OpenPCDet [road plane], which are optional for training LiDAR models):
LIGA_PATH
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── configs
├── liga
├── tools
  • You can also choose to link your KITTI dataset path by
YOUR_KITTI_DATA_PATH=~/data/kitti_object
ln -s $YOUR_KITTI_DATA_PATH/training/ ./data/kitti/
ln -s $YOUR_KITTI_DATA_PATH/testing/ ./data/kitti/
  • Generate the data infos by running the following command:
python -m liga.datasets.kitti.kitti_dataset create_kitti_infos
python -m liga.datasets.kitti.kitti_dataset create_gt_database_only

Training & Testing

Test and evaluate the pretrained models

  • To test with multiple GPUs:
./scripts/dist_test_ckpt.sh ${NUM_GPUS} ./configs/stereo/kitti_models/liga.yaml ./ckpt/pretrained_liga.pth

Train a model

  • Train with multiple GPUs
./scripts/dist_train.sh ${NUM_GPUS} 'exp_name' ./configs/stereo/kitti_models/liga.yaml

Pretrained Models

Google Drive

Citation

@InProceedings{Guo_2021_ICCV,
    author = {Guo, Xiaoyang and Shi, Shaoshuai and Wang, Xiaogang and Li, Hongsheng},
    title = {LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month = {October},
    year = {2021}
}

Acknowledgements

Part of codes are migrated from OpenPCDet and DSGN.

Owner
Xiaoyang Guo
Xiaoyang Guo
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Ian Covert 130 Jan 01, 2023
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio

Eliahu Horwitz 55 Dec 14, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022