Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

Related tags

Deep Learningmeshtalk
Overview

meshtalk

This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite

@inproceedings{richard2021meshtalk,
    author    = {Richard, Alexander and Zollh\"ofer, Michael and Wen, Yandong and de la Torre, Fernando and Sheikh, Yaser},
    title     = {MeshTalk: 3D Face Animation From Speech Using Cross-Modality Disentanglement},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {1173-1182}
}

Supplemental Material

Watch the video

Running MeshTalk

Dependencies

ffmpeg
numpy
torch         (tested with v1.10.0)
pytorch3d     (tested with v0.4.0)
torchaudio    (tested with v0.10.0)

Animating a Face Mesh from Audio

Download the pretrained models and unzip them. Make sure your python path contains the root directory (export PYTHONPATH=<your_meshtalk_root_directory>).

Then, run

python animate_face.py --model_dir <your_pretrained_model_dir> --audio_file <your_speech_snippet.wav> --output <your_output_file.mp4>

See a description of command line arguments via python animate_face.py --help. We provide a neutral face template mesh in assets/face_template.obj. Note that the rendered results look slightly different than in the paper and supplemental video because we use a differnt (open source) rendering engine in this repository.

Training your own MeshTalk version

We are in the process of releasing high-quality 3D face captures of 16 subjects (a subset of the dataset used in this paper). We will link to the dataset here once it is available.

License

The code and dataset are released under CC-NC 4.0 International license.

Comments
  • Can I change the OBJ model?

    Can I change the OBJ model?

    If I want to change an OBJ face, what are the requirements? Or is there a template for the face you use? Then you can create many faces through the template. I read other issues and learned that not all OBJ can be used. Does the number of vertices of the mesh need to be the same? Does the face size need to be the same?

    This is a cool project.

    opened by ALIENMINT 6
  • asset files creation

    asset files creation

    Hi, I ran the custom audio expressions on your neutral mesh object and it ran well. I wanted to run the audio on my own custom (model)object files. I have created the object files for my person model. For this how do I generate the asset files - face_mean.npy, face_std forehead_mask and neck mask files? Are these files generated for the object file, or am i supposed to resize the object file to the 6172 dimension in order to use with the existing asset files? Thank you for your help in advance.

    opened by programmeddeath1 6
  • new obj

    new obj

    i have a new obj file with 6172 points from the default obj file, Q1:what is the meaning of the file face_mean and face_std and the two txt with smoothing ? Is the middle face and the hyperbole face ? Q2: how to make the face_mean and face_std and the smooth txt file?

    opened by luoww1992 5
  • Training parameters

    Training parameters

    Hello,

    I am trying to train MeshTalk on the VOCA dataset, however, the loss value explodes if I use a learning rate 1e-4 or higher, and keeps oscillating in the range of 0.2 if I use a lower learning rate (this does not lead to realistic results). I was wondering what training parameters were used in the paper?

    I am using the following parameters: no. of frames, T = 128 optimizer SGD with lr=9e-5 (at the moment), momentum=0.9, nesterov=True M_upper = 5 and M_lower = 5 batch_size = 16

    Thanks for any help!

    opened by UttaranB127 5
  • mesh faces missing for multiface

    mesh faces missing for multiface

    The mesh graph (.obj) multiface provided has almost 2000 faces less than the mesh by meshtalk (.obj). I wonder how to cope with it. Should I do some remeshing work to connect the isolated vertices together?

    opened by songtoy 4
  • How to use diffrent obj model?

    How to use diffrent obj model?

    Incredible work!Thanks! I have a question on using diffrent obj model. I tried to use obj model file created by deca, but meet a error:

    (meshtalk) [email protected]:/data/cx/GANs/meshtalk$ python animate_face.py --model_dir weights/pretrained_models --audio_file test.wav --output outputs --face_template myasset/mzd.obj /home/ubuntu/.local/lib/python3.8/site-packages/torchaudio/backend/utils.py:53: UserWarning: "sox" backend is being deprecated. The default backend will be changed to "sox_io" backend in 0.8.0 and "sox" backend will be removed in 0.9.0. Please migrate to "sox_io" backend. Please refer to https://github.com/pytorch/audio/issues/903 for the detail. warnings.warn( load assets... load models... Loaded: weights/pretrained_models/vertex_unet.pkl Loaded: weights/pretrained_models/context_model.pkl Loaded: weights/pretrained_models/encoder.pkl animate face mesh... /home/ubuntu/.local/lib/python3.8/site-packages/torch/functional.py:515: UserWarning: stft will require the return_complex parameter be explicitly specified in a future PyTorch release. Use return_complex=False to preserve the current behavior or return_complex=True to return a complex output. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:653.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore /home/ubuntu/.local/lib/python3.8/site-packages/torch/functional.py:515: UserWarning: The function torch.rfft is deprecated and will be removed in a future PyTorch release. Use the new torch.fft module functions, instead, by importing torch.fft and calling torch.fft.fft or torch.fft.rfft. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:590.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore Traceback (most recent call last): File "animate_face.py", line 93, in geom = template_verts.cuda().view(1, 1, 6172, 3).expand(-1, T, -1, -1).contiguous() RuntimeError: shape '[1, 1, 6172, 3]' is invalid for input of size 15069

    What should I do if I want to animate different obj files?

    opened by AdamMayor2018 4
  • Different topology from multiface dataset?

    Different topology from multiface dataset?

    I find that the number of vertices from your given template object is different from what I downloaded from multiface dataset. Especially the details of the mouth are quite different, would you please share more information about the experiments?

    opened by chenerg 3
  • Context model - how to train?

    Context model - how to train?

    Hello,

    How to train the autoregressive model for inference? In the forward function, what would be the first expression_one_hot tensor? I understand subsequent inputs would be the labels output of previous timestep.

    `def forward(self, expression_one_hot: th.Tensor, audio_code: th.Tensor):

       x = self.embedding(expression_one_hot)
    
        for layer in self.context_layers:
            x = layer(x, audio_code)
            x = F.leaky_relu(x, 0.2)
    
        logits = self.logits(x)
        logprobs = F.log_softmax(logits, dim=-1)
        probs = F.softmax(logprobs, dim=-1)
        labels = th.argmax(logprobs, dim=-1)
    
        return {"logprobs": logprobs, "probs": probs, "labels": labels}` 
    

    Thanks

    opened by karthik-mohankumar 3
  • Do you have any uv texture mapping files?

    Do you have any uv texture mapping files?

    Hi. I am very impressed with your wonderful research. Thank you so much for sharing the great results. I want to render a texture to the output generated by this model. Can I get a uv texture mapping file that matches the output?

    opened by shovelingpig 3
  • Audio features are different from your paper statement

    Audio features are different from your paper statement

    Hi, I found the audio preprocessing use simple transformation in your codes (load_audio & audio_chunking). But there are different from your statement in paper where the paper says"Our audio data is recorded at 16kHz. For each tracked mesh, we compute the Mel spectrogram of a 600ms audio snippet starting 500ms before and ending 100ms after the respective visual frame. We extract 80-dimensional Mel spectral features every 10ms, using 1, 024 frequency bins and a window size of 800 for the underlying Fourier transform."

    I didn't find any Mel spectral calculation in your code, why there are different? Is the current version is better than Mel spectral features?

    opened by kjhgfdsaas 3
  • Build pytorch3d 0.4.0 failed with torch1.10

    Build pytorch3d 0.4.0 failed with torch1.10

    I try to build pytorch3d 0.4.0 source with torch1.10 as same version as readme. But it always failed. The log is below:

    /home/local/gcc-5.3.0/bin/gcc -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -DWITH_CUDA -DTHRUST_IGNORE_CUB_VERSION_CHECK -I/home/Projects/github_projects/pytorch3d/pytorch3d/csrc -I/home/software_packages/cub-1.10.0 -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include/TH -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include/THC -I/usr/local/cuda-10.2/include -I/home/anaconda3/envs/torch1.10/include/python3.7m -c /home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.cpp -o build/temp.linux-x86_64-3.7/home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.o -std=c++14 -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE="_gcc" -DPYBIND11_STDLIB="_libstdcpp" -DPYBIND11_BUILD_ABI="_cxxabi1011" -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0
      cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
      /home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.cpp: In function ‘std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor> RasterizeMeshesNaiveCpu(const at::Tensor&, const at::Tensor&, const at::Tensor&, const at::Tensor&, std::tuple<int, int>, float, int, bool, bool, bool)’:
      /home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.cpp:294:28: error: converting to ‘std::tuple<float, int, float, float, float, float>’ from initializer list would use explicit constructor ‘constexpr std::tuple< <template-parameter-1-1> >::tuple(_UElements&& ...) [with _UElements = {const float&, int&, const float&, const float&, const float&, const float&}; <template-parameter-2-2> = void; _Elements = {float, int, float, float, float, float}]’
                     q[idx_top_k] = {
                                  ^
      error: command '/home/local/gcc-5.3.0/bin/gcc' failed with exit status 1
      Building wheel for pytorch3d (setup.py) ... error
      ERROR: Failed building wheel for pytorch3d
    

    Dose pytorch3d 0.4.0 really support torch1.10? I see the requirement is less than 1.7.1 in pytorch3d 0.4.0 url and less than 1.9.1 in pytorch3d main url

    My environment:

    • centos 7
    • gcc 5.3.0
    • cuda 10.2
    • cub 1.10
    • python 3.7 (conda environment)
    • torch1.10
    • pytorch3d 0.4.0
    opened by wikiwen 3
  • Which data was used for the pre-trained model

    Which data was used for the pre-trained model

    Hi! The paper mentions the following:

    We release a subset of 16 subjects of this dataset and our model using only these subjects as a baseline to compare against

    Since multiface was release with only 13 identities, can you please confirm what was used for the released pre-trained model? (e.g. the 13 identities in multiface? Those plus 3 other identities? Or another set of 16 identities?)

    Thank you!

    opened by luizgh 0
Releases(pretrained_models_v1.0)
Owner
Meta Research
Meta Research
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022