Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Related tags

Deep Learningproxprop
Overview

Proximal Backpropagation

Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient steps to update the network parameters. We have analyzed this algorithm in our ICLR 2018 paper:

Proximal Backpropagation (Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers; ICLR 2018) [https://arxiv.org/abs/1706.04638]

tl;dr

  • We provide a PyTorch implementation of ProxProp for Python 3 and PyTorch 1.0.1.
  • The results of our paper can be reproduced by executing the script paper_experiments.sh.
  • ProxProp is implemented as a torch.nn.Module (a 'layer') and can be combined with any other layer and first-order optimizer. While a ProxPropConv2d and a ProxPropLinear layer already exist, you can generate a ProxProp layer for your favorite linear layer with one line of code.

Installation

  1. Make sure you have a running Python 3 (tested with Python 3.7) ecosytem. We recommend that you use a conda install, as this is also the recommended option to get the latest PyTorch running. For this README and for the scripts, we assume that you have conda running with Python 3.7.
  2. Clone this repository and switch to the directory.
  3. Install the dependencies via conda install --file conda_requirements.txt and pip install -r pip_requirements.txt.
  4. Install PyTorch with magma support. We have tested our code with PyTorch 1.0.1 and CUDA 10.0. You can install this setup via
    conda install -c pytorch magma-cuda100
    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
    
  5. (optional, but necessary to reproduce paper experiments) Download the CIFAR-10 dataset by executing get_data.sh

Training neural networks with ProxProp

ProxProp is implemented as a custom linear layer (torch.nn.Module) with its own backward pass to take implicit gradient steps on the network parameters. With this design choice it can be combined with any other layer, for which one takes explicit gradient steps. Furthermore, the resulting update direction can be used with any first-order optimizer that expects a suitable update direction in parameter space. In our paper we prove that ProxProp generates a descent direction and show experiments with Nesterov SGD and Adam.

You can use our pre-defined layers ProxPropConv2d and ProxPropLinear, corresponding to nn.Conv2d and nn.Linear, by importing

from ProxProp import ProxPropConv2d, ProxPropLinear

Besides the usual layer parameters, as detailed in the PyTorch docs, you can provide:

  • tau_prox: step size for a proximal step; default is tau_prox=1
  • optimization_mode: can be one of 'prox_exact', 'prox_cg{N}', 'gradient' for an exact proximal step, an approximate proximal step with N conjugate gradient steps and an explicit gradient step, respectively; default is optimization_mode='prox_cg1'. The 'gradient' mode is for a fair comparison with SGD, as it incurs the same overhead as the other methods in exploiting a generic implementation with the provided PyTorch API.

If you want to use ProxProp to optimize your favorite linear layer, you can generate the respective module with one line of code. As an example for the the Conv3d layer:

from ProxProp import proxprop_module_generator
ProxPropConv3d = proxprop_module_generator(torch.nn.Conv3d)

This gives you a default implementation for the approximate conjugate gradient solver, which treats all parameters as a stacked vector. If you want to use the exact solver or want to use the conjugate gradient solver more efficiently, you have to provide the respective reshaping methods to proxprop_module_generator, as this requires specific knowledge of the layer's structure and cannot be implemented generically. As a template, take a look at the ProxProp.py file, where we have done this for the ProxPropLinear layer.

By reusing the forward/backward implementations of existing PyTorch modules, ProxProp becomes readily accessible. However, we pay an overhead associated with generically constructing the backward pass using the PyTorch API. We have intentionally sided with genericity over speed.

Reproduce paper experiments

To reproduce the paper experiments execute the script paper_experiments.sh. This will run our paper's experiments, store the results in the directory paper_experiments/ and subsequently compile the results into the file paper_plots.pdf. We use an NVIDIA Titan X GPU; executing the script takes roughly 3 hours.

Acknowledgement

We want to thank Soumith Chintala for helping us track down a mysterious bug and the whole PyTorch dev team for their continued development effort and great support to the community.

Publication

If you use ProxProp, please acknowledge our paper by citing

@article{Frerix-et-al-18,
    title = {Proximal Backpropagation},
    author={Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers},
    journal={International Conference on Learning Representations},
    year={2018},
    url = {https://arxiv.org/abs/1706.04638}
}
Owner
Thomas Frerix
Thomas Frerix
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022