PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

Related tags

Deep LearningPSANet
Overview

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction)

by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Loy, Dahua Lin, Jiaya Jia, details are in project page.

Introduction

This repository is build for PSANet, which contains source code for PSA module and related evaluation code. For installation, please merge the related layers and follow the description in PSPNet repository (test with CUDA 7.0/7.5 + cuDNN v4).

PyTorch Version

Highly optimized PyTorch codebases available for semantic segmentation in repo: semseg, including full training and testing codes for PSPNet and PSANet.

Usage

  1. Clone the repository recursively:

    git clone --recursive https://github.com/hszhao/PSANet.git
  2. Merge the caffe layers into PSPNet repository:

    Point-wise spatial attention: pointwise_spatial_attention_layer.hpp/cpp/cu and caffe.proto.

  3. Build Caffe and matcaffe:

    cd $PSANET_ROOT/PSPNet
    cp Makefile.config.example Makefile.config
    vim Makefile.config
    make -j8 && make matcaffe
    cd ..
  4. Evaluation:

    • Evaluation code is in folder 'evaluation'.

    • Download trained models and put them in related dataset folder under 'evaluation/model', refer 'README.md'.

    • Modify the related paths in 'eval_all.m':

      Mainly variables 'data_root' and 'eval_list', and your image list for evaluation should be similarity to that in folder 'evaluation/samplelist' if you use this evaluation code structure.

    cd evaluation
    vim eval_all.m
    • Run the evaluation scripts:
    ./run.sh
    
  5. Results:

    Predictions will show in folder 'evaluation/mc_result' and the expected scores are listed as below:

    (mIoU/pAcc. stands for mean IoU and pixel accuracy, 'ss' and 'ms' denote single scale and multiple scale testing.)

    ADE20K:

    network training data testing data mIoU/pAcc.(ss) mIoU/pAcc.(ms) md5sum
    PSANet50 train val 41.92/80.17 42.97/80.92 a8e884
    PSANet101 train val 42.75/80.71 43.77/81.51 ab5e56

    VOC2012:

    network training data testing data mIoU/pAcc.(ss) mIoU/pAcc.(ms) md5sum
    PSANet50 train_aug val 77.24/94.88 78.14/95.12 d5fc37
    PSANet101 train_aug val 78.51/95.18 79.77/95.43 5d8c0f
    PSANet101 COCO + train_aug + val test -/- 85.7/- 3c6a69

    Cityscapes:

    network training data testing data mIoU/pAcc.(ss) mIoU/pAcc.(ms) md5sum
    PSANet50 fine_train fine_val 76.65/95.99 77.79/96.24 25c06a
    PSANet101 fine_train fine_val 77.94/96.10 79.05/96.30 3ac1bf
    PSANet101 fine_train fine_test -/- 78.6/- 3ac1bf
    PSANet101 fine_train + fine_val fine_test -/- 80.1/- 1dfc91
  6. Demo video:

    • Video processed by PSANet (with PSPNet) on BDD dataset for drivable area segmentation: Video.

Citation

If PSANet is useful for your research, please consider citing:

@inproceedings{zhao2018psanet,
  title={{PSANet}: Point-wise Spatial Attention Network for Scene Parsing},
  author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Loy, Chen Change and Lin, Dahua and Jia, Jiaya},
  booktitle={ECCV},
  year={2018}
}

Questions

Please contact '[email protected]' or '[email protected]'

Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 03, 2023
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022