[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

Overview

FFB6D

This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv)

Table of Content

Introduction & Citation

FFB6D is a general framework for representation learning from a single RGBD image, and we applied it to the 6D pose estimation task by cascading downstream prediction headers for instance semantic segmentation and 3D keypoint voting prediction from PVN3D(Arxiv, Code, Video). At the representation learning stage of FFB6D, we build bidirectional fusion modules in the full flow of the two networks, where fusion is applied to each encoding and decoding layer. In this way, the two networks can leverage local and global complementary information from the other one to obtain better representations. Moreover, at the output representation stage, we designed a simple but effective 3D keypoints selection algorithm considering the texture and geometry information of objects, which simplifies keypoint localization for precise pose estimation.

Please cite FFB6D & PVN3D if you use this repository in your publications:

@InProceedings{He_2021_CVPR,
author = {He, Yisheng and Huang, Haibin and Fan, Haoqiang and Chen, Qifeng and Sun, Jian},
title = {FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}
}

@InProceedings{He_2020_CVPR,
author = {He, Yisheng and Sun, Wei and Huang, Haibin and Liu, Jianran and Fan, Haoqiang and Sun, Jian},
title = {PVN3D: A Deep Point-Wise 3D Keypoints Voting Network for 6DoF Pose Estimation},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Installation

  • Install CUDA 10.1 / 10.2

  • Set up python3 environment from requirement.txt:

    pip3 install -r requirement.txt 
  • Install apex:

    git clone https://github.com/NVIDIA/apex
    cd apex
    export TORCH_CUDA_ARCH_LIST="6.0;6.1;6.2;7.0;7.5"  # set the target architecture manually, suggested in issue https://github.com/NVIDIA/apex/issues/605#issuecomment-554453001
    pip3 install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
    cd ..
  • Install normalSpeed, a fast and light-weight normal map estimator:

    git clone https://github.com/hfutcgncas/normalSpeed.git
    cd normalSpeed/normalSpeed
    python3 setup.py install --user
    cd ..
  • Install tkinter through sudo apt install python3-tk

  • Compile RandLA-Net operators:

    cd ffb6d/models/RandLA/
    sh compile_op.sh

Code Structure

[Click to expand]
  • ffb6d
    • ffb6d/common.py: Common configuration of dataset and models, eg. dataset path, keypoints path, batch size and so on.
    • ffb6d/datasets
      • ffb6d/datasets/ycb
        • ffb6d/datasets/ycb/ycb_dataset.py: Data loader for YCB_Video dataset.
        • ffb6d/datasets/ycb/dataset_config
          • ffb6d/datasets/ycb/dataset_config/classes.txt: Object list of YCB_Video dataset.
          • ffb6d/datasets/ycb/dataset_config/radius.txt: Radius of each object in YCB_Video dataset.
          • ffb6d/datasets/ycb/dataset_config/train_data_list.txt: Training set of YCB_Video datset.
          • ffb6d/datasets/ycb/dataset_config/test_data_list.txt: Testing set of YCB_Video dataset.
        • ffb6d/datasets/ycb/ycb_kps
          • ffb6d/datasets/ycb/ycb_kps/{obj_name}_8_kps.txt: ORB-FPS 3D keypoints of an object in the object coordinate system.
          • ffb6d/datasets/ycb/ycb_kps/{obj_name}_corners.txt: 8 corners of the 3D bounding box of an object in the object coordinate system.
    • ffb6d/models
      • ffb6d/models/ffb6d.py: Network architecture of the proposed FFB6D.
      • ffb6d/models/cnn
        • ffb6d/models/cnn/extractors.py: Resnet backbones.
        • ffb6d/models/cnn/pspnet.py: PSPNet decoder.
        • ffb6d/models/cnn/ResNet_pretrained_mdl: Resnet pretraiend model weights.
      • ffb6d/models/loss.py: loss calculation for training of FFB6D model.
      • ffb6d/models/pytorch_utils.py: pytorch basic network modules.
      • ffb6d/models/RandLA/: pytorch version of RandLA-Net from RandLA-Net-pytorch
    • ffb6d/utils
      • ffb6d/utils/basic_utils.py: basic functions for data processing, visualization and so on.
      • ffb6d/utils/meanshift_pytorch.py: pytorch version of meanshift algorithm for 3D center point and keypoints voting.
      • ffb6d/utils/pvn3d_eval_utils_kpls.py: Object pose esitimation from predicted center/keypoints offset and evaluation metrics.
      • ffb6d/utils/ip_basic: Image Processing for Basic Depth Completion from ip_basic.
      • ffb6d/utils/dataset_tools
        • ffb6d/utils/dataset_tools/DSTOOL_README.md: README for dataset tools.
        • ffb6d/utils/dataset_tools/requirement.txt: Python3 requirement for dataset tools.
        • ffb6d/utils/dataset_tools/gen_obj_info.py: Generate object info, including SIFT-FPS 3d keypoints, radius etc.
        • ffb6d/utils/dataset_tools/rgbd_rnder_sift_kp3ds.py: Render rgbd images from mesh and extract textured 3d keypoints (SIFT/ORB).
        • ffb6d/utils/dataset_tools/utils.py: Basic utils for mesh, pose, image and system processing.
        • ffb6d/utils/dataset_tools/fps: Furthest point sampling algorithm.
        • ffb6d/utils/dataset_tools/example_mesh: Example mesh models.
    • ffb6d/train_ycb.py: Training & Evaluating code of FFB6D models for the YCB_Video dataset.
    • ffb6d/demo.py: Demo code for visualization.
    • ffb6d/train_ycb.sh: Bash scripts to start the training on the YCB_Video dataset.
    • ffb6d/test_ycb.sh: Bash scripts to start the testing on the YCB_Video dataset.
    • ffb6d/demo_ycb.sh: Bash scripts to start the demo on the YCB_Video_dataset.
    • ffb6d/train_log
      • ffb6d/train_log/ycb
        • ffb6d/train_log/ycb/checkpoints/: Storing trained checkpoints on the YCB_Video dataset.
        • ffb6d/train_log/ycb/eval_results/: Storing evaluated results on the YCB_Video_dataset.
        • ffb6d/train_log/ycb/train_info/: Training log on the YCB_Video_dataset.
  • requirement.txt: python3 environment requirements for pip3 install.
  • figs/: Images shown in README.

Datasets

  • YCB-Video: Download the YCB-Video Dataset from PoseCNN. Unzip it and link the unzippedYCB_Video_Dataset to ffb6d/datasets/ycb/YCB_Video_Dataset:

    ln -s path_to_unzipped_YCB_Video_Dataset ffb6d/datasets/ycb/

Training and evaluating

Training on the YCB-Video Dataset

  • Start training on the YCB-Video Dataset by:

    # commands in train_ycb.sh
    n_gpu=8  # number of gpu to use
    python3 -m torch.distributed.launch --nproc_per_node=$n_gpu train_ycb.py --gpus=$n_gpu

    The trained model checkpoints are stored in train_log/ycb/checkpoints/

    A tip for saving GPU memory: you can open the mixed precision mode to save GPU memory by passing parameters opt_level=O1 to train_ycb.py. The document for apex mixed precision trainnig can be found here.

Evaluating on the YCB-Video Dataset

  • Start evaluating by:
    # commands in test_ycb.sh
    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar  # checkpoint to test.
    python3 -m torch.distributed.launch --nproc_per_node=1 train_ycb.py --gpu '0' -eval_net -checkpoint $tst_mdl -test -test_pose # -debug
    You can evaluate different checkpoints by revising the tst_mdl to the path of your target model.
  • Pretrained model: We provide our pre-trained models on onedrive, here. Download the pre-trained model, move it to train_log/ycb/checkpoints/ and modify tst_mdl for testing.

Demo/visualization on the YCB-Video Dataset

  • After training your model or downloading the pre-trained model, you can start the demo by:
    # commands in demo_ycb.sh
    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar
    python3 -m demo -checkpoint $tst_mdl -dataset ycb
    The visualization results will be stored in train_log/ycb/eval_results/pose_vis.

Results

  • Evaluation result without any post refinement on the YCB-Video dataset:

    PoseCNN PointFusion DenseFusion PVN3D Our FFF6D
    ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S)
    ALL 75.8 59.9 83.9 - 91.2 82.9 95.5 91.8 96.6 92.7
  • Evaluation result on the LineMOD dataset:

    RGB RGB-D
    PVNet CDPN DPOD PointFusion DenseFusion(iterative) G2L-Net PVN3D FFF6D
    MEAN 86.3 89.9 95.2 73.7 94.3 98.7 99.4 99.7
  • Robustness upon occlusion:

  • Model parameters and speed on the LineMOD dataset (one object / frame) with one 2080Ti GPU:
    Parameters Network Forward Pose Estimation All time
    PVN3D 39.2M 170ms 20ms 190ms
    FFF6D
    33.8M 57ms 18ms 75ms

Adaptation to New Dataset

  • Install and generate required mesh info following DSTOOL_README.

  • Modify info of your new dataset in FFB6D/ffb6d/common.py

  • Write your dataset preprocess script following FFB6D/ffb6d/datasets/ycb/ycb_dataset.py. Note that you should modify or call the function that get your model info, such as 3D keypoints, center points, and radius properly.

  • (Very Important!) Visualize and check if you process the data properly, eg, the projected keypoints and center point, the semantic label of each point, etc. For example, you can visualize the projected center point (red point) and selected keypoints (orange points) as follow by running python3 -m datasets.ycb.ycb_dataset.

  • For inference, make sure that you load the 3D keypoints, center point, and radius of your objects in the object coordinate system properly in FFB6D/ffb6d/utils/pvn3d_eval_utils.py.

  • Check that all setting are modified properly by using the ground truth information for evaluation. The result should be high and close to 100 if everything is correct. For example, testing ground truth on the YCB_Video dataset by passing -test_gt parameters to train_ycb.py will get results higher than 99.99:

    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar
    python3 -m torch.distributed.launch --nproc_per_node=1 train_ycb.py --gpu '0' -eval_net -checkpoint $tst_mdl -test -test_pose -test_gt
    

To Do

  • Scripts and pre-trained models for LineMOD dataset.

License

Licensed under the MIT License.

Owner
Yisheng (Ethan) He
Ph.D. student @ HKUST
Yisheng (Ethan) He
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022