This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

Overview

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video]

Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang

CVPR 2021

This is re-implementation of TransGAN: Two Transformers Can Make One Strong GAN, and That Can Scale Up, CVPR 2021 in PyTorch.

Generative Adversarial Networks-GAN builded completely free of Convolutions and used Transformers architectures which became popular since Vision Transformers-ViT. In this implementation, CIFAR-10 dataset was used.

0 Epoch 40 Epoch 100 Epoch 200 Epoch

Related Work - Vision Transformers (ViT)

In this implementation, as a discriminator, Vision Transformer(ViT) Block was used. In order to get more info about ViT, you can look at the original paper here

Credits for illustration of ViT: @lucidrains

Installation

Before running train.py, check whether you have libraries in requirements.txt! Also, create ./fid_stat folder and download the fid_stats_cifar10_train.npz file in this folder. To save your model during training, create ./checkpoint folder using mkdir checkpoint.

Training

python train.py

Pretrained Model

You can find pretrained model here. You can download using:

wget https://drive.google.com/file/d/134GJRMxXFEaZA0dF-aPpDS84YjjeXPdE/view

or

curl gdrive.sh | bash -s https://drive.google.com/file/d/134GJRMxXFEaZA0dF-aPpDS84YjjeXPdE/view

License

MIT

Citation

@article{jiang2021transgan,
  title={TransGAN: Two Transformers Can Make One Strong GAN},
  author={Jiang, Yifan and Chang, Shiyu and Wang, Zhangyang},
  journal={arXiv preprint arXiv:2102.07074},
  year={2021}
}
@article{dosovitskiy2020,
  title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
  author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and  Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
  journal={arXiv preprint arXiv:2010.11929},
  year={2020}
}
@inproceedings{zhao2020diffaugment,
  title={Differentiable Augmentation for Data-Efficient GAN Training},
  author={Zhao, Shengyu and Liu, Zhijian and Lin, Ji and Zhu, Jun-Yan and Han, Song},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2020}
}
Comments
  • GPU memory, Modifying batch size

    GPU memory, Modifying batch size

    Hello,

    I saw your comment in VITA-Group's implementation of TransGAN and started looking at your implementation here.

    Without modifying anything and attempting to run "python train.py" results in CUDA out of memory; I believe the GPU I'm using cannot handle the model size/training images that you've specified. I tried editing the batch size on lines 35 and 36 of train.py (--gener_batch_size, changing default from 64 to 32, etc.), but I get a RuntimeError of:

    Output 0 of UnbindBackward is a view and is being modified inplace. This view is the output of a function that returns multiple views. Such fuctions do not allow the otutput views to be modified inplace. You should replace the inplace operation by an out-of-place one.

    My two questions are:

    1. How would you suggest modifying the training parameters to deal with GPU running out of memory? and,
    2. Is there a better way to edit the batch size, and what else do I need to change in order for the code to not break when the batch size is changed?

    Thanks!

    opened by Andrew-X-Wang 10
  • Create your own FID stats file

    Create your own FID stats file

    Hello and thanks for the implementation. I'm trying to train this model on a different datset, but to do so I need a custom fid_stats file for my dataset. How can I create it ?

    opened by IlyasMoutawwakil 2
  • FID score: nan

    FID score: nan

    Thank you for your contribution. But in the training processing, FID score is Nan. I want to known whether it is appropriate. Should I make some chance to solve this problem?

    opened by Jamie-Cheung 1
  • TransGAN fid problem

    TransGAN fid problem

    hello,I would like to humbly ask you what is the difference beetween TransGAN-main and TransGAN-master?can Trans-main reproduce similar results of the original paper? The results obtained by using CIFAR in TransGAN-main are quite different from those in the paper,and WGAN-EP loss concussion,so I want to ask you.

    opened by Stephenlove 1
  • How do you test on your own dataset with the checkpoint.pth generated?

    How do you test on your own dataset with the checkpoint.pth generated?

    I want to use the checkpoint saved to generate my own results from a testing dataset and use those images later to calculate my own evaluation metrics. Please help

    opened by meh-naz 0
Releases(v2.0)
Owner
Ahmet Sarigun
Yet, another human being!
Ahmet Sarigun
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Saeed Lotfi 28 Dec 12, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022