CVPR 2021 Challenge on Super-Resolution Space

Overview

Learning the Super-Resolution Space Challenge
NTIRE 2021 at CVPR

Learning the Super-Resolution Space challenge is held as a part of the 6th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop in conjunction with CVPR 2021. The goal of this challenge is to develop a super-resolution method that can actively sample from the space of plausible super-resolutions.

How to participate?

To participate in this challenge, please sign up using the following link and clone this repo to benchmark your results. Challenge participants can submit their paper to this CVPR 2021 Workshop.

CVPR 2021 Challenge Signup

Tackling the ill-posed nature of Super-Resolution

CVPR 2021 Challenge

Usually, super-resolution (SR) is trained using pairs of high- and low-resolution images. Infinitely many high-resolution images can be downsampled to the same low-resolution image. That means that the problem is ill-posed and cannot be inverted with a deterministic mapping. Instead, one can frame the SR problem as learning a stochastic mapping, capable of sampling from the space of plausible high-resolution images given a low-resolution image. This problem has been addressed in recent works [1, 2, 3]. The one-to-many stochastic formulation of the SR problem allows for a few potential advantages:

  • The development of more robust learning formulations that better accounts for the ill-posed nature of the SR problem.
  • Multiple predictions can be sampled and compared.
  • It opens the potential for controllable exploration and editing in the space of SR predictions.
Super-Resolution with Normalizing Flow Explorable SR Screenshot 2021-01-12 at 16 05 43
[Paper] [Project] [Paper] [Project] [Paper] [Project]
[1] SRFlow: Learning the Super-Resolution Space with Normalizing Flow. Lugmayr et al., ECCV 2020. [2] Explorable Super-Resolution. Bahat & Michaeli, CVPR 2020. [3] DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution. Bühler et al., ACCV 2020.

CVPR 2021 Challenge on Learning the Super-Resolution Space

We organize this challenge to stimulate research in the emerging area of learning one-to-many SR mappings that are capable of sampling from the space of plausible solutions. Therefore the task is to develop a super-resolution method that:

  1. Each individual SR prediction should achieve highest possible photo-realism, as perceived by humans.
  2. Is capable of sampling an arbitrary number of SR images capturing meaningful diversity, corresponding to the uncertainty induced by the ill-posed nature of the SR problem together with image priors.
  3. Each individual SR prediction should be consistent with the input low-resolution image.

The challenge contains two tracks, targeting 4X and 8X super-resolution respectively. You can download the training and validation data in the table below. At a later stage, the low-resolution of the test set will be released.

  Training Validation
  Low-Resolution High-Resolution Low-Resolution High-Resolution
Track 4X 4X LR Train 4X HR Train 4X LR Valid 4X HR Valid
Track 8X 8X LR Train 8X HR Train 8X LR Valid 8X HR Valid

Challenge Rules

To guide the research towards useful and generalizable techniques, submissions need to adhere to the following rules. All participants must submit code of their solution along with the final results.

  • The method must be able to generate an arbitrary number of diverse samples. That is, your method cannot be limited to a maximum number of different SR samples (corresponding to e.g. a certain number of different output network heads).
  • All SR samples must be generated by a single model. That is, no ensembles are allowed.
  • No self-ensembles during inference (e.g. flipping and rotation).
  • All SR samples must be generated using the same hyper-parameters. That is, the generated SR samples shall not be the result of different choices of hyper-parameters during inference.
  • We accept submissions of deterministic methods. However, they will naturally score zero in the diversity measure and therefore not be able to win the challenge.
  • Other than the validation and test split of the DIV2k dataset, any training data or pre-training is allowed. You are not allowed to use DIV2K validation or test sets (low- and high-resolution images) for training.

Evaluation Protocol

A method is evaluated by first predicting a set of 10 randomly sampled SR images for each low-resolution image in the dataset. From this set of images, evaluation metrics corresponding to the three criteria above will be considered. The participating methods will be ranked according to each metric. These ranks will then be combined into a final score. The three evaluation metrics are described next.

git clone --recursive https://github.com/andreas128/NTIRE21_Learning_SR_Space.git
python3 measure.py OutName path/to/Ground-Truch path/to/Super-Resolution n_samples scale_factor

# n_samples = 10
# scale_factor = 4 for 4X and 8 for 8X

How we measure Photo-realism?

To assess the photo-realism, a human study will be performed on the test set for the final submission.

Automatically assessing the photo-realism and image quality is an extremely difficult task. All existing methods have severe shortcomings. As a very rough guide, you can use the LPIPS distance. Note: LPIPS will not be used to score photo-realism of you final submission. So beware of overfitting to LPIPS, as that can lead to worse results. LPIPS is integrated in our provided toolkit in measure.py.

How we measure the spanning of the SR Space?

The samples of the developed method should provide a meaningful diversity. To measure that, we define the following score. We sample 10 images, densely calculate a metric between the samples and the ground truth. To obtain the local best we pixel-wise select the best score out of the 10 samples and take the full image's average. The global best is obtained by averaging the whole image's score and selecting the best. Finally, we calculate the score using the following formula:

score = (global best - local best)/(global best) * 100

ESRGAN SRFlow
Track 4X 0 25.36
Track 8X 0 10.62

How we measure the Low Resolution Consistency

To measure how much information is preserved in the super-resloved image from the low-resolution image, we measure the LR-PSNR. The goal in this challenge is to obtain a LR-PSNR of 45dB. All approaches that have an average PSNR above this value will be ranked equally in terms of this criteria.

ESRGAN SRFlow
Track 4X 39.01 49.91
Track 8X 31.28 50.0

Important Dates

Date Event
2021.03.01 Final test data release (inputs only)
2021.03.08 test result submission deadline
2021.03.09 fact sheet / code / model submission deadline
2021.03.11 test preliminary score release to the participants
2021.03.28 challenge paper submission deadline
2021.04.13 camera-ready deadline
2021.06.15 workshop day

Submission of Final Test Results

After the final testing phase, participants will be asked to submit:

  • SR predictions on the test set.
  • Code.
  • A fact sheet describing their method.

Details will follow when the test phase starts ...

Issues and questions

In case of any questions about the challenge or the toolkit, feel free to open an issue on Github.

Organizers

CVPR 2021 NTIRE Terms and conditions

The terms and conditions for participating in the challenge are provided here

How to participate?

To participate in this challenge, please sign up using following link and clone this repo to benchmark your results. Challenge participants can submit their paper to this CVPR 2021 Workshop.

CVPR 2021 Challenge Signup

Owner
andreas
andreas
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023