CVPR 2021 Challenge on Super-Resolution Space

Overview

Learning the Super-Resolution Space Challenge
NTIRE 2021 at CVPR

Learning the Super-Resolution Space challenge is held as a part of the 6th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop in conjunction with CVPR 2021. The goal of this challenge is to develop a super-resolution method that can actively sample from the space of plausible super-resolutions.

How to participate?

To participate in this challenge, please sign up using the following link and clone this repo to benchmark your results. Challenge participants can submit their paper to this CVPR 2021 Workshop.

CVPR 2021 Challenge Signup

Tackling the ill-posed nature of Super-Resolution

CVPR 2021 Challenge

Usually, super-resolution (SR) is trained using pairs of high- and low-resolution images. Infinitely many high-resolution images can be downsampled to the same low-resolution image. That means that the problem is ill-posed and cannot be inverted with a deterministic mapping. Instead, one can frame the SR problem as learning a stochastic mapping, capable of sampling from the space of plausible high-resolution images given a low-resolution image. This problem has been addressed in recent works [1, 2, 3]. The one-to-many stochastic formulation of the SR problem allows for a few potential advantages:

  • The development of more robust learning formulations that better accounts for the ill-posed nature of the SR problem.
  • Multiple predictions can be sampled and compared.
  • It opens the potential for controllable exploration and editing in the space of SR predictions.
Super-Resolution with Normalizing Flow Explorable SR Screenshot 2021-01-12 at 16 05 43
[Paper] [Project] [Paper] [Project] [Paper] [Project]
[1] SRFlow: Learning the Super-Resolution Space with Normalizing Flow. Lugmayr et al., ECCV 2020. [2] Explorable Super-Resolution. Bahat & Michaeli, CVPR 2020. [3] DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution. Bühler et al., ACCV 2020.

CVPR 2021 Challenge on Learning the Super-Resolution Space

We organize this challenge to stimulate research in the emerging area of learning one-to-many SR mappings that are capable of sampling from the space of plausible solutions. Therefore the task is to develop a super-resolution method that:

  1. Each individual SR prediction should achieve highest possible photo-realism, as perceived by humans.
  2. Is capable of sampling an arbitrary number of SR images capturing meaningful diversity, corresponding to the uncertainty induced by the ill-posed nature of the SR problem together with image priors.
  3. Each individual SR prediction should be consistent with the input low-resolution image.

The challenge contains two tracks, targeting 4X and 8X super-resolution respectively. You can download the training and validation data in the table below. At a later stage, the low-resolution of the test set will be released.

  Training Validation
  Low-Resolution High-Resolution Low-Resolution High-Resolution
Track 4X 4X LR Train 4X HR Train 4X LR Valid 4X HR Valid
Track 8X 8X LR Train 8X HR Train 8X LR Valid 8X HR Valid

Challenge Rules

To guide the research towards useful and generalizable techniques, submissions need to adhere to the following rules. All participants must submit code of their solution along with the final results.

  • The method must be able to generate an arbitrary number of diverse samples. That is, your method cannot be limited to a maximum number of different SR samples (corresponding to e.g. a certain number of different output network heads).
  • All SR samples must be generated by a single model. That is, no ensembles are allowed.
  • No self-ensembles during inference (e.g. flipping and rotation).
  • All SR samples must be generated using the same hyper-parameters. That is, the generated SR samples shall not be the result of different choices of hyper-parameters during inference.
  • We accept submissions of deterministic methods. However, they will naturally score zero in the diversity measure and therefore not be able to win the challenge.
  • Other than the validation and test split of the DIV2k dataset, any training data or pre-training is allowed. You are not allowed to use DIV2K validation or test sets (low- and high-resolution images) for training.

Evaluation Protocol

A method is evaluated by first predicting a set of 10 randomly sampled SR images for each low-resolution image in the dataset. From this set of images, evaluation metrics corresponding to the three criteria above will be considered. The participating methods will be ranked according to each metric. These ranks will then be combined into a final score. The three evaluation metrics are described next.

git clone --recursive https://github.com/andreas128/NTIRE21_Learning_SR_Space.git
python3 measure.py OutName path/to/Ground-Truch path/to/Super-Resolution n_samples scale_factor

# n_samples = 10
# scale_factor = 4 for 4X and 8 for 8X

How we measure Photo-realism?

To assess the photo-realism, a human study will be performed on the test set for the final submission.

Automatically assessing the photo-realism and image quality is an extremely difficult task. All existing methods have severe shortcomings. As a very rough guide, you can use the LPIPS distance. Note: LPIPS will not be used to score photo-realism of you final submission. So beware of overfitting to LPIPS, as that can lead to worse results. LPIPS is integrated in our provided toolkit in measure.py.

How we measure the spanning of the SR Space?

The samples of the developed method should provide a meaningful diversity. To measure that, we define the following score. We sample 10 images, densely calculate a metric between the samples and the ground truth. To obtain the local best we pixel-wise select the best score out of the 10 samples and take the full image's average. The global best is obtained by averaging the whole image's score and selecting the best. Finally, we calculate the score using the following formula:

score = (global best - local best)/(global best) * 100

ESRGAN SRFlow
Track 4X 0 25.36
Track 8X 0 10.62

How we measure the Low Resolution Consistency

To measure how much information is preserved in the super-resloved image from the low-resolution image, we measure the LR-PSNR. The goal in this challenge is to obtain a LR-PSNR of 45dB. All approaches that have an average PSNR above this value will be ranked equally in terms of this criteria.

ESRGAN SRFlow
Track 4X 39.01 49.91
Track 8X 31.28 50.0

Important Dates

Date Event
2021.03.01 Final test data release (inputs only)
2021.03.08 test result submission deadline
2021.03.09 fact sheet / code / model submission deadline
2021.03.11 test preliminary score release to the participants
2021.03.28 challenge paper submission deadline
2021.04.13 camera-ready deadline
2021.06.15 workshop day

Submission of Final Test Results

After the final testing phase, participants will be asked to submit:

  • SR predictions on the test set.
  • Code.
  • A fact sheet describing their method.

Details will follow when the test phase starts ...

Issues and questions

In case of any questions about the challenge or the toolkit, feel free to open an issue on Github.

Organizers

CVPR 2021 NTIRE Terms and conditions

The terms and conditions for participating in the challenge are provided here

How to participate?

To participate in this challenge, please sign up using following link and clone this repo to benchmark your results. Challenge participants can submit their paper to this CVPR 2021 Workshop.

CVPR 2021 Challenge Signup

Owner
andreas
andreas
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023