To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

Related tags

Deep Learningjaxton
Overview

JaxTon

💯 JAX exercises

License GitHub Twitter

Mission 🚀

To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts.

JAX

The JAX package in Python is a library for high performance and efficient machine learning research.

It is commonly used for various deep learning tasks and runs seamlessly on CPUs, GPUs as well as TPUs.

Exercises 📖

There are a total of 100 JAX exercises divided into 10 sets of Jupyter Notebooks with 10 exercises each. It is recommended to go through the exercises in order but you may start with any set depending on your expertise.

Structured as exercises & tutorials - Choose your style
Suitable for beginners, intermediates & experts - Choose your level
Available on Colab, Kaggle, Binder & GitHub - Choose your platform
Supports running on CPU, GPU & TPU - Choose your backend

Set 01 • JAX Introduction • Beginner • Exercises 1-10

Style Colab Kaggle Binder GitHub
Exercises 1st February, 2022 1st February, 2022 1st February, 2022 1st February, 2022
Solutions 1st February, 2022 1st February, 2022 1st February, 2022 1st February, 2022

Set 02 • Data Operations • Beginner • Exercises 11-20

Style Colab Kaggle Binder GitHub
Exercises 4th February, 2022 4th February, 2022 4th February, 2022 4th February, 2022
Solutions 4th February, 2022 4th February, 2022 4th February, 2022 4th February, 2022

Set 03 • Pseudorandom Numbers • Beginner • Exercises 21-30

Style Colab Kaggle Binder GitHub
Exercises 7th February, 2022 7th February, 2022 7th February, 2022 7th February, 2022
Solutions 7th February, 2022 7th February, 2022 7th February, 2022 7th February, 2022

Set 04 • Just-In-Time (JIT) Compilation • Beginner • Exercises 31-40

Style Colab Kaggle Binder GitHub
Exercises 10th February, 2022 10th February, 2022 10th February, 2022 10th February, 2022
Solutions 10th February, 2022 10th February, 2022 10th February, 2022 10th February, 2022

Set 05 • Control Flows • Beginner • Exercises 41-50

Style Colab Kaggle Binder GitHub
Exercises 13th February, 2022 13th February, 2022 13th February, 2022 13th February, 2022
Solutions 13th February, 2022 13th February, 2022 13th February, 2022 13th February, 2022

Set 06 • Automatic Differentiation • Intermediate • Exercises 51-60

Style Colab Kaggle Binder GitHub
Exercises 16th February, 2022 16th February, 2022 16th February, 2022 16th February, 2022
Solutions 16th February, 2022 16th February, 2022 16th February, 2022 16th February, 2022

Set 07 • Automatic Vectorization • Intermediate • Exercises 61-70

Style Colab Kaggle Binder GitHub
Exercises 19th February, 2022 19th February, 2022 19th February, 2022 19th February, 2022
Solutions 19th February, 2022 19th February, 2022 19th February, 2022 19th February, 2022

Set 08 • Pytrees • Intermediate • Exercises 71-80

Style Colab Kaggle Binder GitHub
Exercises 22nd February, 2022 22nd February, 2022 22nd February, 2022 22nd February, 2022
Solutions 22nd February, 2022 22nd February, 2022 22nd February, 2022 22nd February, 2022

Set 09 • Neural Networks • Expert • Exercises 81-90

Style Colab Kaggle Binder GitHub
Exercises 25th February, 2022 25th February, 2022 25th February, 2022 25th February, 2022
Solutions 25th February, 2022 25th February, 2022 25th February, 2022 25th February, 2022

Set 10 • Capstone Project • Expert • Exercises 91-100

Style Colab Kaggle Binder GitHub
Exercises 28th February, 2022 28th February, 2022 28th February, 2022 28th February, 2022
Solutions 28th February, 2022 28th February, 2022 28th February, 2022 28th February, 2022

The Jupyter Notebooks can also be run locally by cloning the repo and running on your local jupyter server.

git clone https://github.com/vopani/jaxton.git
python3 -m pip install notebook
jupyter notebook

P.S. The notebooks will be periodically updated to improve the exercises and support the latest version.

Contribution 🛠️

Please create an Issue for any improvements, suggestions or errors in the content.

You can also tag @vopani on Twitter for any other queries or feedback.

Credits 🙏

JAX

License 📋

This project is licensed under the Apache License 2.0.

Owner
Rohan Rao
9-time Indian Sudoku Champion | Senior Data Scientist @h2oai | Quadruple Kaggle Grandmaster
Rohan Rao
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022