PyTorch implementation of the TTC algorithm

Overview

Trust-the-Critics

This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critics: Generatorless and Multipurpose WGANs with Initial Convergence Guarantees.

How to run this code

  • Create a Python virtual environment with Python 3.8 installed.
  • Install the necessary Python packages listed in the requirements.txt file (this can be done through pip install -r /path/to/requirements.txt).

In the example_shell_scripts folder, we include samples of shell scripts we used to run our experiments. We note that training generative models is computationally demanding, and thus requires adequate computational resources (i.e. running this on your laptop is not recommended).

TTC algorithm

The various experiments we run with TTC are described in Section 5 and Addendix B of the paper. Illustrating the flexibility of the TTC algorithm, the image generation, denoising and translation experiments can all be run using the ttc.py script; the only necessary changes are the source and target datasets. Running TTC with a given source and a given target will train and save several critic neural networks that can subsequently be used to push the source distribution towards the target distribution by applying the 'steptaker' function found in TTC_utils/steptaker.py once for each critic.

Necessary arguments for ttc.py are:

  • 'source' : The name of the distribution or dataset that is to be pushed towards the target (options are listed in ttc.py).
  • 'target' : The name of the target dataset (options are listed in ttc.py).
  • 'data' : The path of a directory where the necessary data is located. This includes the target dataset, in a format that can be accessed by a dataloader object obtained from the corresponding function in dataloader.py. Such a dataloader always belongs to the torch.utils.data.DataLoader class (e.g. if target=='mnist', then the corresponding dataloader will be an instance of torchvision.datasets.MNIST, and the MNIST dataset should be placed in 'data' in a way that reflects this). If the source is a dataset, it needs to be placed in 'data' as well. If source=='untrained_gen', then the untrained generator used to create the source distribution needs to be saved under 'data/ugen.pth'.
  • 'temp_dir' : The path of a directory where the trained critics will be saved, along with a few other files (including the log.pkl file that contains the step sizes). Despite the name, this folder isn't necessarily temporary.

Other optional arguments are described in a commented section at the top of the ttc.py script. Note that running ttc.py will only train the critics that the TTC algorithm uses to push the source distribution towards the target distribution, it will not actually push any samples from the source towards the target (as mentioned above, this is done using the steptaker function).

TTC image generation
For a generative experiment, run ttc.py with the source argument set to either 'noise' or 'untrained_gen' and the target of your choice. Then, run ttc_eval.py, which will use the saved critics and step sizes to push noise inputs towards the target distribution according to the TTC algorithm (using the steptaker function), and which will optionally evaluate generative performance with FID and/or MMD (FID is used in the paper). The arguments 'source', 'target', 'data', 'temp_dir' and 'model' for ttc_eval.py should be set to the same values as when running ttc.py. If evaluating FID, the folder specified by 'temp_dir' should contain a subdirectory named 'temp_dir/{target}test' (e.g. 'temp_dir/mnisttest' if target=='mnist') containing the test data from the target dataset saved as individual files. For instance, this folder could contain files of the form '00001.jpg', '00002.jpg', etc. (although extensions other than .jpg can be used).

TTC denoising
For a denoising experiment, run ttc.py with source=='noisybsds500' and target=='bsds500' (specifying a noise level with the 'sigma' argument). Then, run denoise_eval.py (with the same 'temp_dir', 'data' and 'model' arguments), which will add noise to images, denoise them using the TTC algorithm and the saved critics, and evaluate PSNR's.

TTC Monet translation
For a denoising experiment, run ttc.py with source=='photo' and target=='monet'. Then run ttc_eval.py (with the same 'source', 'target', 'temp_dir', 'data' and 'model' arguments, and presumably with no FID or MMD evaluation), which will sample realistic images from the source and make them look like Monet paintings.

WGAN misalignment

The WGAN misalignment experiments are described in Section 3 and Appendix B.1 of the paper, and are run using misalignments.py. This script trains a WGAN while, at some iterations, measuring how misaligned the movement of generated samples caused by updating the generator is from the critic's gradient. The generator's FID is also measured at the same iterations.

The required arguments for misalignments.py are:

  • 'target' : The dataset used to train the WGAN - can be either 'mnist' or 'fashion' (for Fashion-MNIST).
  • 'data' : The path of a folder where the MNIST (or Fashion-MNIST) dataset is located, in a format that can be accessed by an instance of the torchvision.datasets.MNIST class (resp torchvision.datasets.FashionMNIST).
  • 'fid_data' : The path of a folder containing the test data from the MNIST dataset saved as individual files. For instance, this folder could contain files of the form '00001.jpg', '00002.jpg', etc. (although extensions other than .jpg can be used).
  • 'checkpoints' : A string of integers separated by underscores. The integers specify the iterations at which misalignments and FID are computed, and training will continue until the largest iteration is reached.

Other optional arguments (including 'results_path' and 'temp_dir') are described in a commented section at the top of the misalignments.py. The misalignment results reported in the paper (Tables 1 and 5, and Figure 3), correspond to using the default hyperparameters and to setting the 'checkpoints' argument roughly equal to '10_25000_40000', with '10' corresponding the early stage in training, '25000' to the mid stage, and '40000' to the late stage.

WGAN generation

For completeness we include the code that was used to obtain the WGAN FID statistics in Table 3 of the paper, which includes the wgan_gp.py and wgan_gp_eval.py scripts. The former trains a WGAN with the InfoGAN architecture on the dataset specified by the 'target' argument, saving generator model dictionaries in the folder specified by 'temp_dir' at ten equally spaced stages in training. The wgan_gp_eval.py script evaluates the performance of the generator with the different model dictionaries in 'temp_dir'.

The necessary arguments to run wgan_gp.py are:

  • 'target' : The name of the dataset to generate (can be either 'mnist', 'fashion' or 'cifar10').
  • 'data' : Folder where the dataset is located.
  • 'temp_dir' : Folder where the model dictionaries are saved.

Once wgan_gp.py has run, wgan_gp_eval.py should be called with the same arguments for 'target', 'data' and 'temp_dir', and setting the 'model' argument to 'infogan'. If evaluating FID, the 'temp_dir' folder needs to contain the test data from the target dataset saved as individual files. For instance, this folder could contain files of the form '00001.jpg', '00002.jpg', etc. (although extensions other than .jpg can be used).

Reproducibility

This repository contains two branches: 'main' and 'reproducible'. You are currectly viewing the 'main' branch, which contains a clean version of the code meant to be easy to read and interpret and to run more efficiently than the version on the 'reproducible' branch. The results obtained by running the code on this branch should be nearly (but not perfectly) identical to the results stated in the papers, the differences stemming from the randomness inherent to the experiments. The 'reproducible' branch allows one to replicate exactly the results stated in the paper (random seeds are specified) for the TTC experiments.

Computing architecture and running times

We ran different versions of the code presented here on Compute Canada (https://www.computecanada.ca/) clusters, always using a single NVIDIA V100 Volta or NVIDIA A100 Ampere GPU. Here are rough estimations of the running times for our experiments.

  • MNIST/Fashion MNIST generation training run (TTC): 60-90 minutes.
  • MNIST/Fashion MNIST generation training run (WGAN): 45-90 minutes (this includes misalignments computations).
  • CIFAR10 generation training run: 3-4 hours (TTC), 90 minutes (WGAN-GP).
  • Image translation training run: up to 20 hours.
  • Image denoising training run: 8-10 hours.

Assets

Portions of this code, as well as the datasets used to produce our experimental results, make use of existing assets. We provide here a list of all assets used, along with the licenses under which they are distributed, if specified by the originator:

Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Rohit Ingole 2 Mar 24, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022