It is modified Tensorflow 2.x version of Mask R-CNN

Overview

[TF 2.X] Mask R-CNN for Object Detection and Segmentation

[Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorflow 2.X version.

Development Environment

  • OS : Ubuntu 20.04.2 LTS
  • GPU : Geforce RTX 3090
  • CUDA : 11.2
  • Tensorflow : 2.5.0
  • Keras : 2.5.0 (tensorflow backend)
  • Python 3.8

This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bounding boxes and segmentation masks for each instance of an object in the image. It's based on Feature Pyramid Network (FPN) and a ResNet101 backbone.

Instance Segmentation Sample

The repository includes:

  • Source code of Mask R-CNN built on FPN and ResNet101.
  • Training code for MS COCO
  • Pre-trained weights for MS COCO
  • Jupyter notebooks to visualize the detection pipeline at every step
  • ParallelModel class for multi-GPU training
  • Evaluation on MS COCO metrics (AP)
  • Example of training on your own dataset

The code is documented and designed to be easy to extend. If you use it in your research, please consider citing this repository (bibtex below). If you work on 3D vision, you might find our recently released Matterport3D dataset useful as well. This dataset was created from 3D-reconstructed spaces captured by our customers who agreed to make them publicly available for academic use. You can see more examples here.

Getting Started

  • demo.ipynb Is the easiest way to start. It shows an example of using a model pre-trained on MS COCO to segment objects in your own images. It includes code to run object detection and instance segmentation on arbitrary images.

  • train_shapes.ipynb shows how to train Mask R-CNN on your own dataset. This notebook introduces a toy dataset (Shapes) to demonstrate training on a new dataset.

  • (model.py, utils.py, config.py): These files contain the main Mask RCNN implementation.

  • inspect_data.ipynb. This notebook visualizes the different pre-processing steps to prepare the training data.

  • inspect_model.ipynb This notebook goes in depth into the steps performed to detect and segment objects. It provides visualizations of every step of the pipeline.

  • inspect_weights.ipynb This notebooks inspects the weights of a trained model and looks for anomalies and odd patterns.

Step by Step Detection

To help with debugging and understanding the model, there are 3 notebooks (inspect_data.ipynb, inspect_model.ipynb, inspect_weights.ipynb) that provide a lot of visualizations and allow running the model step by step to inspect the output at each point. Here are a few examples:

1. Anchor sorting and filtering

Visualizes every step of the first stage Region Proposal Network and displays positive and negative anchors along with anchor box refinement.

2. Bounding Box Refinement

This is an example of final detection boxes (dotted lines) and the refinement applied to them (solid lines) in the second stage.

3. Mask Generation

Examples of generated masks. These then get scaled and placed on the image in the right location.

4.Layer activations

Often it's useful to inspect the activations at different layers to look for signs of trouble (all zeros or random noise).

5. Weight Histograms

Another useful debugging tool is to inspect the weight histograms. These are included in the inspect_weights.ipynb notebook.

6. Logging to TensorBoard

TensorBoard is another great debugging and visualization tool. The model is configured to log losses and save weights at the end of every epoch.

6. Composing the different pieces into a final result

Training on MS COCO

We're providing pre-trained weights for MS COCO to make it easier to start. You can use those weights as a starting point to train your own variation on the network. Training and evaluation code is in samples/coco/coco.py. You can import this module in Jupyter notebook (see the provided notebooks for examples) or you can run it directly from the command line as such:

# Train a new model starting from pre-trained COCO weights
python3 samples/coco/coco.py train --dataset=/path/to/coco/ --model=coco

# Train a new model starting from ImageNet weights
python3 samples/coco/coco.py train --dataset=/path/to/coco/ --model=imagenet

# Continue training a model that you had trained earlier
python3 samples/coco/coco.py train --dataset=/path/to/coco/ --model=/path/to/weights.h5

# Continue training the last model you trained. This will find
# the last trained weights in the model directory.
python3 samples/coco/coco.py train --dataset=/path/to/coco/ --model=last

You can also run the COCO evaluation code with:

# Run COCO evaluation on the last trained model
python3 samples/coco/coco.py evaluate --dataset=/path/to/coco/ --model=last

The training schedule, learning rate, and other parameters should be set in samples/coco/coco.py.

Training on Your Own Dataset

Start by reading this blog post about the balloon color splash sample. It covers the process starting from annotating images to training to using the results in a sample application.

In summary, to train the model on your own dataset you'll need to extend two classes:

Config This class contains the default configuration. Subclass it and modify the attributes you need to change.

Dataset This class provides a consistent way to work with any dataset. It allows you to use new datasets for training without having to change the code of the model. It also supports loading multiple datasets at the same time, which is useful if the objects you want to detect are not all available in one dataset.

See examples in samples/shapes/train_shapes.ipynb, samples/coco/coco.py, samples/balloon/balloon.py, and samples/nucleus/nucleus.py.

Differences from the Official Paper

This implementation follows the Mask RCNN paper for the most part, but there are a few cases where we deviated in favor of code simplicity and generalization. These are some of the differences we're aware of. If you encounter other differences, please do let us know.

  • Image Resizing: To support training multiple images per batch we resize all images to the same size. For example, 1024x1024px on MS COCO. We preserve the aspect ratio, so if an image is not square we pad it with zeros. In the paper the resizing is done such that the smallest side is 800px and the largest is trimmed at 1000px.

  • Bounding Boxes: Some datasets provide bounding boxes and some provide masks only. To support training on multiple datasets we opted to ignore the bounding boxes that come with the dataset and generate them on the fly instead. We pick the smallest box that encapsulates all the pixels of the mask as the bounding box. This simplifies the implementation and also makes it easy to apply image augmentations that would otherwise be harder to apply to bounding boxes, such as image rotation.

    To validate this approach, we compared our computed bounding boxes to those provided by the COCO dataset. We found that ~2% of bounding boxes differed by 1px or more, ~0.05% differed by 5px or more, and only 0.01% differed by 10px or more.

  • Learning Rate: The paper uses a learning rate of 0.02, but we found that to be too high, and often causes the weights to explode, especially when using a small batch size. It might be related to differences between how Caffe and TensorFlow compute gradients (sum vs mean across batches and GPUs). Or, maybe the official model uses gradient clipping to avoid this issue. We do use gradient clipping, but don't set it too aggressively. We found that smaller learning rates converge faster anyway so we go with that.

Citation

Use this bibtex to cite this repository:

@misc{matterport_maskrcnn_2017,
  title={Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow},
  author={Waleed Abdulla},
  year={2017},
  publisher={Github},
  journal={GitHub repository},
  howpublished={\url{https://github.com/matterport/Mask_RCNN}},
}

Contributing

Contributions to this repository are welcome. Examples of things you can contribute:

  • Speed Improvements. Like re-writing some Python code in TensorFlow or Cython.
  • Training on other datasets.
  • Accuracy Improvements.
  • Visualizations and examples.

You can also join our team and help us build even more projects like this one.

Requirements

Python 3.4, TensorFlow 1.3, Keras 2.0.8 and other common packages listed in requirements.txt.

MS COCO Requirements:

To train or test on MS COCO, you'll also need:

If you use Docker, the code has been verified to work on this Docker container.

Installation

  1. Clone this repository

  2. Install dependencies

    pip3 install -r requirements.txt
  3. Run setup from the repository root directory

    python3 setup.py install
  4. Download pre-trained COCO weights (mask_rcnn_coco.h5) from the releases page.

  5. (Optional) To train or test on MS COCO install pycocotools from one of these repos. They are forks of the original pycocotools with fixes for Python3 and Windows (the official repo doesn't seem to be active anymore).

Projects Using this Model

If you extend this model to other datasets or build projects that use it, we'd love to hear from you.

4K Video Demo by Karol Majek.

Mask RCNN on 4K Video

Images to OSM: Improve OpenStreetMap by adding baseball, soccer, tennis, football, and basketball fields.

Identify sport fields in satellite images

Splash of Color. A blog post explaining how to train this model from scratch and use it to implement a color splash effect.

Balloon Color Splash

Segmenting Nuclei in Microscopy Images. Built for the 2018 Data Science Bowl

Code is in the samples/nucleus directory.

Nucleus Segmentation

Detection and Segmentation for Surgery Robots by the NUS Control & Mechatronics Lab.

Surgery Robot Detection and Segmentation

Reconstructing 3D buildings from aerial LiDAR

A proof of concept project by Esri, in collaboration with Nvidia and Miami-Dade County. Along with a great write up and code by Dmitry Kudinov, Daniel Hedges, and Omar Maher. 3D Building Reconstruction

Usiigaci: Label-free Cell Tracking in Phase Contrast Microscopy

A project from Japan to automatically track cells in a microfluidics platform. Paper is pending, but the source code is released.

Characterization of Arctic Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery

Research project to understand the complex processes between degradations in the Arctic and climate change. By Weixing Zhang, Chandi Witharana, Anna Liljedahl, and Mikhail Kanevskiy. image

Mask-RCNN Shiny

A computer vision class project by HU Shiyu to apply the color pop effect on people with beautiful results.

Mapping Challenge: Convert satellite imagery to maps for use by humanitarian organisations.

Mapping Challenge

GRASS GIS Addon to generate vector masks from geospatial imagery. Based on a Master's thesis by Ondřej Pešek.

GRASS GIS Image

Owner
Milner
UNIST AI, Graduate Student
Milner
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021