AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

Overview

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL is an automated penetration testing framework based on Deep Reinforcement Learning (DRL) techniques. AutoPentest-DRL can determine the most appropriate attack path for a given logical network, and can also be used to execute a penetration testing attack on a real network via tools such as Nmap and Metasploit. This framework is intended for educational purposes, so that users can study the penetration testing attack mechanisms. AutoPentest-DRL is being developed by the Cyber Range Organization and Design (CROND) NEC-endowed chair at the Japan Advanced Institute of Science and Technology (JAIST) in Ishikawa, Japan.

An overview of AutoPentest-DRL is shown below. The framework receives user input regarding the logical target network, including vulnerability information; alternatively, the framework can use Nmap for network scanning to find actual vulnerabilities in a real target network with known topology. The MulVAL attack-graph generator is then used to determine potential attack trees, which are fed in a simplified form into the DQN Decision Engine. The attack path that is produced as output can be used to study the attack mechanisms on a large number of logical networks. Alternatively, the framework can use the attack path with penetration testing tools, such as Metasploit, making it possible for the user to study how the attack can be carried out on a real target network.

Overview of AutoPentest-DRL

Next we provide brief information on how to setup and use AutoPentest-DRL. For details about its operation, please refer to the User Guide that we also make available.

Prerequisites

Several external tools are required in order to use AutoPentest-DRL; for the basic functionality (DQN training and attacks on logical networks), you'll need:

  • MulVAL: Attack-graph generator used by AutoPentest-DRL to produce possible attack paths for a given network. See the MulVAL page for installation instructions and dependencies. MulVAL should be installed in the directory repos/mulval in the AutoPentest-DRL folder. You also need to configure the /etc/profile file as discussed here. On some systems the tool epstopdf may also need to be installed, for instance by using the command below:
    sudo apt install texlive-font-utils
    

If you plan to use AutoPentest-DRL with real networks, you'll also need:

  • Nmap: Network scanner used by AutoPentest-DRL to determine vulnerabilities in a given real network. The command needed to install nmap on Ubuntu is given below:
    sudo apt install nmap
    
  • Metasploit: Penetration testing tools used by AutoPentest-DRL to actually conduct the attack proposed by the DQN engine on the real target network. To install Metasploit, you can use the installers made available on the Metasploit website. In addition, we use pymetasploit3 as RPC API to communicate with Metasploit, and this tool needs to be installed in the directory Penetration_tools/pymetasploit3 by following its author's instructions.

Setup

AutoPentest-DRL has been developed mainly on the Ubuntu 18.04 LTS operating system; other OSes may work, but have not been tested. In order to set up AutoPentest-DRL, use the releases page to download the latest version, and extract the source code archive into a directory of your choice (for instance, your home directory) on the host on which you intend to use it.

AutoPentest-DRL is implemented in Python, and it requires several packages to run. The file requirements.txt included with the distribution can be used to install the necessary packages via the following command that should be run from the AutoPentest-DRL/ directory:

$ sudo -H pip install -r requirements.txt

Quick Start

AutoPentest-DRL includes a trained DQN model, so you can use it out-of-the-box on a sample logical network topology by running the following command in a terminal from the AutoPentest-DRL/ directory:

$ python3 ./AutoPentest-DRL.py logical_attack

In this logical attack mode no actual attack is conducted, and AutoPentest-DRL will only determine the optimal attack path for the logical network topology that is described in the file MulVal_P/logical_attack_v1.P. By comparing the output path with the visualization of the attack graph that is generated by MulVAL in the file mulval_results/AttackGraph.pdf you can study in detail the attack steps.

For more information about the operation modes of AutoPentest-DRL, including the real attack mode and the training mode, see our User Guide.

References

For a research background regarding AutoPentest-DRL, please refer to the following references:

  • Z. Hu, R. Beuran, Y. Tan, "Automated Penetration Testing Using Deep Reinforcement Learning", IEEE European Symposium on Security and Privacy Workshops (EuroS&PW 2020), Workshop on Cyber Range Applications and Technologies (CACOE'20), Genova, Italy, September 7, 2020, pp. 2-10.
  • Z. Hu, "Automated Penetration Testing Using Deep Reinforcement Learning", Master's thesis, March 2021. https://hdl.handle.net/10119/17095

For a list of contributors to this project, see the file CONTRIBUTORS included in the distribution.

Comments
  • mulval topology template

    mulval topology template

    Hello, I just want to ask if I change the configuration of topology generator then I also have to change the topo_gen_template.P file content or is it a generic template. Thanks.

    opened by shoaib5261 7
  • Evaluating the model

    Evaluating the model

    Thank you for your support, but I have one more question. In the paper you wrote that this model has an accuracy of 0.86. I quite don't understand the method of evaluating, the data used for evaluating and whether that data is in this repo or not.

    Also, can you explain why the model has to train multiple times and the reward increases gradually? I think the simplified matrix holds all the possible paths so the model just need to loop through all paths and print out the desired one. Sorry for my weak understandings.

    Looking forward to your reply. Thank you!

    opened by QuynhNguyen269 5
  • FileNotFound error

    FileNotFound error

    Hi, I'm trying to run the code but it gives me multiple FileNotFound errors. Please help. Thank you!

    The output is:

    ################################################################################ AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning ################################################################################ AutoPentest-DRL: Operation mode: Attack on logical network AutoPentest-DRL: Target topology: MulVAL_P/logical_topology_1.P

    AutoPentest-DRL: Compute attack path for logical network... Generate attack graph using MulVAL... sh: 1: ../repos/mulval/utils/graph_gen.sh: not found Process attack graph into attack matrix... Traceback (most recent call last): File "/home/leekutti/NT522/AutoPentest-DRL/DQN/./confirm_path.py", line 9, in MAP = generateMapClass.sendMap File "./learn/generateMap.py", line 108, in sendMap self.x = self.createMatrix() File "./learn/generateMap.py", line 20, in createMatrix self.csvfile = open('../mulval_result/VERTICES.CSV', 'r') FileNotFoundError: [Errno 2] No such file or directory: '../mulval_result/VERTICES.CSV' Traceback (most recent call last): File "/home/leekutti/NT522/AutoPentest-DRL/DQN/learn/./dqn_learn.py", line 32, in env = gym.make('dqnenv-v0') File "/usr/local/lib/python3.9/dist-packages/gym/envs/registration.py", line 235, in make return registry.make(id, **kwargs) File "/usr/local/lib/python3.9/dist-packages/gym/envs/registration.py", line 129, in make env = spec.make(**kwargs) File "/usr/local/lib/python3.9/dist-packages/gym/envs/registration.py", line 89, in make cls = load(self.entry_point) File "/usr/local/lib/python3.9/dist-packages/gym/envs/registration.py", line 27, in load mod = importlib.import_module(mod_name) File "/usr/lib/python3.9/importlib/init.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "", line 1030, in _gcd_import File "", line 1007, in _find_and_load File "", line 986, in _find_and_load_unlocked File "", line 680, in _load_unlocked File "", line 790, in exec_module File "", line 228, in _call_with_frames_removed File "/home/leekutti/NT522/AutoPentest-DRL/DQN/learn/env/environment.py", line 12, in class dqnEnvironment(gym.Env): File "/home/leekutti/NT522/AutoPentest-DRL/DQN/learn/env/environment.py", line 14, in dqnEnvironment MAP = np.loadtxt('../processdata/newmap.txt') File "/usr/lib/python3/dist-packages/numpy/lib/npyio.py", line 961, in loadtxt fh = np.lib._datasource.open(fname, 'rt', encoding=encoding) File "/usr/lib/python3/dist-packages/numpy/lib/_datasource.py", line 195, in open return ds.open(path, mode, encoding=encoding, newline=newline) File "/usr/lib/python3/dist-packages/numpy/lib/_datasource.py", line 535, in open raise IOError("%s not found." % path) OSError: ../processdata/newmap.txt not found.

    opened by QuynhNguyen269 3
  • AssertionError: The environment must specify an observation space

    AssertionError: The environment must specify an observation space

    hi everyone, Please help. Thank you!


    The output is:


    Process attack graph into attack matrix... Traceback (most recent call last): File "./dqn_learn.py", line 32, in env = gym.make('dqnenv-v0') File "/usr/local/lib/python3.7/dist-packages/gym/envs/registration.py", line 685, in make env = PassiveEnvChecker(env) File "/usr/local/lib/python3.7/dist-packages/gym/wrappers/env_checker.py", line 26, in init ), "The environment must specify an observation space. https://www.gymlibrary.ml/content/environment_creation/" AssertionError: The environment must specify an observation space. https://www.gymlibrary.ml/content/environment_creation/

    opened by VisaCai 2
  • about article

    about article

    in the article《Automated Penetration Testing Using Deep Reinforcement Learning》 ,we find a index about the Accuracy, i have a Confuse。the accuracy is between the best DQN penetration path and true path. or others?

    opened by lixiaohaao 1
  • target drone

    target drone

    Sorry to bother you frequently,Regarding the construction of a multi-level network, like the network in your experiment, can you elaborate on how to build it?

    Looking forward to your reply LIxiao

    opened by lixiaohaao 1
Releases(1.0)
  • 1.0(Jun 1, 2021)

    First release of AutoPentest-DRL, an automated penetration testing framework based on Deep Reinforcement Learning (DRL) techniques. The framework can determine the most appropriate attack path for a given logical network, and can also be used to execute a penetration testing attack on a real network via tools such as Nmap and Metasploit.

    Source code(tar.gz)
    Source code(zip)
Owner
Cyber Range Organization and Design Chair
Cyber Range Organization and Design (CROND) NEC-endowed chair at JAIST conducts R&D on cybersecurity education and training
Cyber Range Organization and Design Chair
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022