[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Overview

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021)


PatchPoseNet


This is the official implementation of the paper "Self-Supervised Learning of Image Scale and Orientation Estimation" by Jongmin Lee [Google Scholar], Yoonwoo Jeong [Google Scholar], and Minsh Cho [Google Scholar]. We introduce a self-supervised framework for learning patch pose. Given a rescaled/rotated pair of image patches, we feed them to the patch pose estimation networks that output scale/orientation histograms for each. We compare the output histogram vectors by the histogram alignment technique and compute the loss.

Requirements

  • Ubuntu 18.04
  • python 3.8
  • pytorch 1.8.1
  • torchvision 0.9.1
  • wandb 0.10.28

Environment

Clone the Git repository

git clone https://github.com/bluedream1121/SelfScaOri.git

Install dependency

Run the script to install all the dependencies. You need to provide the conda install path (e.g. ~/anaconda3) and the name for the created conda environment.

bash install.sh conda_install_path self-sca-ori

Dataset preparation

You can download the training/test dataset using the following scripts:

cd datasets
bash download.sh

If you want to regenerate the patchPose datasets, please run the following script:

cd datasets/patchpose_dataset_generation
bash generation_script.sh

Trained models

cd trained_models
bash download_ori_model.sh
bash download_sca_model.sh

Test on the patchPose and the HPatches

After download the datasets and the pre-trained models, you can evaluate the patch pose estimation results using the following scripts:

python test.py --load trained_models/_*branchori/best_model.pt  --dataset_type ppa_ppb
python test.py --load trained_models/_*branchsca/best_model.pt  --dataset_type ppa_ppb

python test.py --load trained_models/_*branchori/best_model.pt  --dataset_type hpa
python test.py --load trained_models/_*branchsca/best_model.pt  --dataset_type hpa

Training


Hitogram_alignment


You can train the networks for patch scale estimation and orientation estimation using the proposed histogram alignment loss as follows:

python train.py --branch ori --output_ori 36

python train.py --branch sca --output_sca 13

Citation

If you find our code or paper useful to your research work, please consider citing our work using the following bibtex:

@inproceedings{lee2021self,
    author   = {},
    title    = {},
    booktitle= {},
    year     = {2021}
}

Contact

Jongmin Lee ([email protected])

Questions can also be left as issues in the repository.

Owner
Jongmin Lee
POSTECH Computer Vision Lab.
Jongmin Lee
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022