code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Overview

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling

This repository contains our PyTorch training code, evaluation code and pretrained models for AttentiveNAS.

[Update 06/21] Recenty, we have improved AttentiveNAS using an adaptive knowledge distillation training strategy, see our AlphaNet repo for more details of this work. AlphaNet has been accepted by ICML'21.

[Update 07/21] We provide an example code for searching the best models of FLOPs vs. accuracy trade-offs at here.

For more details, please see AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling by Dilin Wang, Meng Li, Chengyue Gong and Vikas Chandra.

If you find this repo useful in your research, please consider citing our work:

@article{wang2020attentivenas,
  title={AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling},
  author={Wang, Dilin and Li, Meng and Gong, Chengyue and Chandra, Vikas},
  journal={arXiv preprint arXiv:2011.09011},
  year={2020}
}

Evaluation

To reproduce our results:

  • Please first download our pretrained AttentiveNAS models from a Google Drive path and put the pretrained models under your local folder ./attentive_nas_data

  • To evaluate our pre-trained AttentiveNAS models, from AttentiveNAS-A0 to A6, on ImageNet with a single GPU, please run:

    python test_attentive_nas.py --config-file ./configs/eval_attentive_nas_models.yml --model a[0-6]

    Expected results:

    Name MFLOPs Top-1 (%)
    AttentiveNAS-A0 203 77.3
    AttentiveNAS-A1 279 78.4
    AttentiveNAS-A2 317 78.8
    AttentiveNAS-A3 357 79.1
    AttentiveNAS-A4 444 79.8
    AttentiveNAS-A5 491 80.1
    AttentiveNAS-A6 709 80.7

Training

To train our AttentiveNAS models from scratch, please run

python train_attentive_nas.py --config-file configs/train_attentive_nas_models.yml --machine-rank ${machine_rank} --num-machines ${num_machines} --dist-url ${dist_url}

We adopt SGD training on 64 GPUs. The mini-batch size is 32 per GPU; all training hyper-parameters are specified in train_attentive_nas_models.yml.

Additional data

  • A (sub-network config, FLOPs) lookup table could be used for constructing the architecture distribution under FLOPs-constraints.
  • A accuracy predictor trained via scikit-learn, which takes a subnetwork configuration as input, and outputs its predicted accuracy on ImageNet.
    • Convert a subnetwork configuration to our accuracy predictor compatibale inputs:
        res = [cfg['resolution']]
        for k in ['width', 'depth', 'kernel_size', 'expand_ratio']:
            res += cfg[k]
        input = np.asarray(res).reshape((1, -1))
    

License

The majority of AttentiveNAS is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Once For All is licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING and CODE_OF_CONDUCT for more info.

Owner
Facebook Research
Facebook Research
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022